Piecewise Linear and Stochastic Models for the Analysis of Cyber Resilience

Michael J. Weisman, A. Kott, J. Vandekerckhove
{"title":"Piecewise Linear and Stochastic Models for the Analysis of Cyber Resilience","authors":"Michael J. Weisman, A. Kott, J. Vandekerckhove","doi":"10.1109/CISS56502.2023.10089725","DOIUrl":null,"url":null,"abstract":"We model a vehicle equipped with an autonomous cyber-defense system in addition to its inherent physical resilience features. When attacked, this ensemble of cyber-physical features (i.e., “bonware”) strives to resist and recover from the performance degradation caused by the malware's attack. We model the underlying differential equations governing such attacks for piecewise linear characterizations of malware and bonware, develop a discrete time stochastic model, and show that averages of instantiations of the stochastic model approximate solutions to the continuous differential equation. We develop a theory and methodology for approximating the parameters associated with these equations.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089725","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We model a vehicle equipped with an autonomous cyber-defense system in addition to its inherent physical resilience features. When attacked, this ensemble of cyber-physical features (i.e., “bonware”) strives to resist and recover from the performance degradation caused by the malware's attack. We model the underlying differential equations governing such attacks for piecewise linear characterizations of malware and bonware, develop a discrete time stochastic model, and show that averages of instantiations of the stochastic model approximate solutions to the continuous differential equation. We develop a theory and methodology for approximating the parameters associated with these equations.
网络弹性分析的分段线性和随机模型
我们模拟了一辆配备了自主网络防御系统的车辆,以及其固有的物理弹性特征。当受到攻击时,这种网络物理特征的集合(即“bonware”)努力抵抗并从恶意软件攻击引起的性能下降中恢复。我们对控制此类攻击的微分方程进行建模,以实现恶意软件和软件的分段线性特征,开发离散时间随机模型,并表明随机模型实例的平均值近似于连续微分方程的解。我们发展了一种理论和方法来逼近与这些方程相关的参数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信