Vertical Wind Speed Estimation Using Generalized Additive Model (GAM) for Regression

H. Nuha, Rizka Reza Pahlevi, M. Mohandes, S. Rehman, A. Al-Shaikhi, H. Tella
{"title":"Vertical Wind Speed Estimation Using Generalized Additive Model (GAM) for Regression","authors":"H. Nuha, Rizka Reza Pahlevi, M. Mohandes, S. Rehman, A. Al-Shaikhi, H. Tella","doi":"10.1109/CICN56167.2022.10008372","DOIUrl":null,"url":null,"abstract":"The general plan for the provision of electricity of Indonesia Electricity Company for 2010–2019 states that the annual electricity demand is 55,000 MW. Wind speed (WS) assessment is required for wind farm site candidates. This paper uses the generalized additive model (GAM) for vertical WS estimation. The method is evaluated in terms of symmetric mean absolute percentage error (SMAPE), mean absolute error (MAE), and the adjusted coefficient of determination (R2adj). The highest values of R2adj between the measured and the estimated WS values achieved by GAM method at 60, 100, 140, and 180 m of heights are 96.34%, 81.66%, 64.68 %, and 62.90 % respectively.","PeriodicalId":287589,"journal":{"name":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN56167.2022.10008372","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The general plan for the provision of electricity of Indonesia Electricity Company for 2010–2019 states that the annual electricity demand is 55,000 MW. Wind speed (WS) assessment is required for wind farm site candidates. This paper uses the generalized additive model (GAM) for vertical WS estimation. The method is evaluated in terms of symmetric mean absolute percentage error (SMAPE), mean absolute error (MAE), and the adjusted coefficient of determination (R2adj). The highest values of R2adj between the measured and the estimated WS values achieved by GAM method at 60, 100, 140, and 180 m of heights are 96.34%, 81.66%, 64.68 %, and 62.90 % respectively.
用广义加性模型(GAM)进行回归的垂直风速估计
印度尼西亚电力公司2010-2019年电力供应总体规划指出,年电力需求为55,000兆瓦。风速(WS)评估是风电场选址候选人的必要条件。本文采用广义加性模型(GAM)进行垂直WS估计。用对称平均绝对百分比误差(SMAPE)、平均绝对误差(MAE)和调整后的决定系数(R2adj)对该方法进行了评价。在60、100、140和180 m高度,GAM法测得的WS值与估测值之间的R2adj最大值分别为96.34%、81.66%、64.68%和62.90%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信