Model identification of a photovoltaic system for a DC microgrid simulation

M. Gulin, M. Vašak, T. Pavlovic
{"title":"Model identification of a photovoltaic system for a DC microgrid simulation","authors":"M. Gulin, M. Vašak, T. Pavlovic","doi":"10.1109/EPEPEMC.2014.6980528","DOIUrl":null,"url":null,"abstract":"Residential microgrids are mainly based on renewable energy sources (i.e., mainly on photovoltaic panels), energy storage systems (that enable time-shift between production and consumption), and on power converters representing control points that by proper operation ensure overall system stability and quality of power supply. For optimal techno-economical microgrid operation, i.e. microgrid voltage level control and power flow management, the models of microgrid components involved must be known. In this paper we verify a single-diode five-parameters equivalent electrical model of a photovoltaic array by experiments, and based on the verified model propose a new power production model suitable for microgrid power flow optimization applications. Microgrid components are connected to a common power link via an appropriate power converter in order to ensure components' maximum efficiency and the overall system stability. Simulation of DC/DC power converters on a switching level requires significant computational efforts due to high switching frequencies (10-100 kHz). However, it is shown that dynamical behaviour of a DC/DC power converter in closed control loop can be replaced by a PT2 dynamic element with good approximation accuracy. All equivalent electrical models presented in this paper are implemented in the professional simulation platform for power electronic systems Plexim PLECS.","PeriodicalId":325670,"journal":{"name":"2014 16th International Power Electronics and Motion Control Conference and Exposition","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 16th International Power Electronics and Motion Control Conference and Exposition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2014.6980528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Residential microgrids are mainly based on renewable energy sources (i.e., mainly on photovoltaic panels), energy storage systems (that enable time-shift between production and consumption), and on power converters representing control points that by proper operation ensure overall system stability and quality of power supply. For optimal techno-economical microgrid operation, i.e. microgrid voltage level control and power flow management, the models of microgrid components involved must be known. In this paper we verify a single-diode five-parameters equivalent electrical model of a photovoltaic array by experiments, and based on the verified model propose a new power production model suitable for microgrid power flow optimization applications. Microgrid components are connected to a common power link via an appropriate power converter in order to ensure components' maximum efficiency and the overall system stability. Simulation of DC/DC power converters on a switching level requires significant computational efforts due to high switching frequencies (10-100 kHz). However, it is shown that dynamical behaviour of a DC/DC power converter in closed control loop can be replaced by a PT2 dynamic element with good approximation accuracy. All equivalent electrical models presented in this paper are implemented in the professional simulation platform for power electronic systems Plexim PLECS.
直流微电网仿真光伏系统的模型辨识
住宅微电网主要基于可再生能源(即主要基于光伏板),储能系统(实现生产和消费之间的时移),以及作为控制点的电源转换器,通过适当的操作确保整个系统的稳定性和供电质量。为了实现微网的最佳技术经济运行,即微网电压水平控制和潮流管理,必须了解所涉及的微网组件的模型。本文通过实验验证了光伏阵列的单二极管五参数等效电学模型,并在此基础上提出了一种适合微网潮流优化应用的新型产电模型。微电网组件通过适当的功率转换器连接到公共电源链路,以确保组件的最大效率和整个系统的稳定性。由于高开关频率(10- 100khz),在开关电平上模拟DC/DC功率变换器需要大量的计算量。然而,研究表明,在闭环控制回路中,DC/DC功率变换器的动态行为可以用具有良好近似精度的PT2动态元件代替。文中提出的等效电学模型均在电力电子系统专业仿真平台Plexim PLECS上实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信