{"title":"Emotion recognition from spontaneous speech using Hidden Markov models with deep belief networks","authors":"Duc Le, E. Provost","doi":"10.1109/ASRU.2013.6707732","DOIUrl":null,"url":null,"abstract":"Research in emotion recognition seeks to develop insights into the temporal properties of emotion. However, automatic emotion recognition from spontaneous speech is challenging due to non-ideal recording conditions and highly ambiguous ground truth labels. Further, emotion recognition systems typically work with noisy high-dimensional data, rendering it difficult to find representative features and train an effective classifier. We tackle this problem by using Deep Belief Networks, which can model complex and non-linear high-level relationships between low-level features. We propose and evaluate a suite of hybrid classifiers based on Hidden Markov Models and Deep Belief Networks. We achieve state-of-the-art results on FAU Aibo, a benchmark dataset in emotion recognition [1]. Our work provides insights into important similarities and differences between speech and emotion.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102
Abstract
Research in emotion recognition seeks to develop insights into the temporal properties of emotion. However, automatic emotion recognition from spontaneous speech is challenging due to non-ideal recording conditions and highly ambiguous ground truth labels. Further, emotion recognition systems typically work with noisy high-dimensional data, rendering it difficult to find representative features and train an effective classifier. We tackle this problem by using Deep Belief Networks, which can model complex and non-linear high-level relationships between low-level features. We propose and evaluate a suite of hybrid classifiers based on Hidden Markov Models and Deep Belief Networks. We achieve state-of-the-art results on FAU Aibo, a benchmark dataset in emotion recognition [1]. Our work provides insights into important similarities and differences between speech and emotion.