Stress-aware performance evaluation of 3D-stacked wide I/O DRAMs

Tengtao Li, S. Sapatnekar
{"title":"Stress-aware performance evaluation of 3D-stacked wide I/O DRAMs","authors":"Tengtao Li, S. Sapatnekar","doi":"10.1109/ICCAD.2017.8203838","DOIUrl":null,"url":null,"abstract":"3D-stacked wide I/O DRAM can significantly increase cell density and bandwidth while also lowering power consumption. However, 3D structures experience significant thermomechanical stress, which impacts circuit performance. This paper develops a procedure that performs a full performance analysis of 3D DRAMs, including latency, leakage power, refresh power, and area, while incorporating the effects of both layout-aware stress and layout-independent stress. The approach first proposes an analytic stress analysis method for the entire 3D DRAM structure, capturing the stress induced by TSVs, micro bumps, package bumps and warpage. Next, this stress is translated to variations in device mobility and threshold voltage, after which analytical models for latency, leakage power, and refresh power are derived. Finally, a complete analysis of performance variations is performed for various 3D DRAM layout configurations to assess the impact of layout-dependent stress.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

3D-stacked wide I/O DRAM can significantly increase cell density and bandwidth while also lowering power consumption. However, 3D structures experience significant thermomechanical stress, which impacts circuit performance. This paper develops a procedure that performs a full performance analysis of 3D DRAMs, including latency, leakage power, refresh power, and area, while incorporating the effects of both layout-aware stress and layout-independent stress. The approach first proposes an analytic stress analysis method for the entire 3D DRAM structure, capturing the stress induced by TSVs, micro bumps, package bumps and warpage. Next, this stress is translated to variations in device mobility and threshold voltage, after which analytical models for latency, leakage power, and refresh power are derived. Finally, a complete analysis of performance variations is performed for various 3D DRAM layout configurations to assess the impact of layout-dependent stress.
3d堆叠宽I/O dram的应力感知性能评估
3d堆叠的宽I/O DRAM可以显著提高单元密度和带宽,同时降低功耗。然而,3D结构经历显著的热机械应力,这影响电路的性能。本文开发了一个程序,对3D dram进行了全面的性能分析,包括延迟、泄漏功率、刷新功率和面积,同时结合了布局感知应力和布局无关应力的影响。该方法首先提出了一种针对整个3D DRAM结构的解析应力分析方法,捕获了tsv、微凸点、封装凸点和翘曲引起的应力。接下来,这种压力被转化为器件迁移率和阈值电压的变化,然后推导出延迟、泄漏功率和刷新功率的分析模型。最后,对各种3D DRAM布局配置的性能变化进行了完整的分析,以评估布局相关应力的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信