Detecting Ethereum Phishing Scams with Temporal Motif Features of Subgraph

Yunfei Wang, Hao Wang, Xiaozhen Lu, Lu Zhou, L. Liu
{"title":"Detecting Ethereum Phishing Scams with Temporal Motif Features of Subgraph","authors":"Yunfei Wang, Hao Wang, Xiaozhen Lu, Lu Zhou, L. Liu","doi":"10.1109/ISCC58397.2023.10218023","DOIUrl":null,"url":null,"abstract":"In recent years, Ethereum has become a hotspot for criminal activities such as phishing scams that seriously compromise Ethereum transaction security. However, existing methods cannot accurately model Ethereum transaction data and make full use of the temporal structure information and basic account features. In this paper, we propose an Ethereum phishing detection framework based on temporal motif features. By designing a sampling method, we convert labeled Ethereum addresses into multi-directed transaction subgraphs with time and amount to avoid losing structure and attribute information. To learn representations for subgraphs, we define and extract the temporal motif features and general transaction features. Extensive experiments on Support Vector Machine, Random Forest, Logistic Regression, and XGBoost demonstrate that our method significantly outperforms all baselines and provides an effective phishing scams detection for Ethereum.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"94 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, Ethereum has become a hotspot for criminal activities such as phishing scams that seriously compromise Ethereum transaction security. However, existing methods cannot accurately model Ethereum transaction data and make full use of the temporal structure information and basic account features. In this paper, we propose an Ethereum phishing detection framework based on temporal motif features. By designing a sampling method, we convert labeled Ethereum addresses into multi-directed transaction subgraphs with time and amount to avoid losing structure and attribute information. To learn representations for subgraphs, we define and extract the temporal motif features and general transaction features. Extensive experiments on Support Vector Machine, Random Forest, Logistic Regression, and XGBoost demonstrate that our method significantly outperforms all baselines and provides an effective phishing scams detection for Ethereum.
基于子图时间基序特征的以太坊网络钓鱼诈骗检测
近年来,以太坊已经成为网络钓鱼诈骗等犯罪活动的热点,严重损害了以太坊交易的安全性。然而,现有的方法无法准确建模以太坊交易数据,无法充分利用时间结构信息和基本账户特征。在本文中,我们提出了一个基于时间基序特征的以太坊网络钓鱼检测框架。通过设计采样方法,我们将标记的以太坊地址转换为具有时间和数量的多向交易子图,以避免丢失结构和属性信息。为了学习子图的表示,我们定义并提取了时间基序特征和一般事务特征。在支持向量机、随机森林、逻辑回归和XGBoost上进行的大量实验表明,我们的方法显著优于所有基线,并为以太坊提供了有效的网络钓鱼诈骗检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信