Bandit Algorithms for Social Network Queries

Zahy Bnaya, Rami Puzis, Roni Stern, Ariel Felner
{"title":"Bandit Algorithms for Social Network Queries","authors":"Zahy Bnaya, Rami Puzis, Roni Stern, Ariel Felner","doi":"10.1109/SocialCom.2013.29","DOIUrl":null,"url":null,"abstract":"In many cases the best way to find a profile or a set of profiles matching some criteria in a social network is via targeted crawling. An important challenge in targeted crawling is to choose the next profile to explore. Existing heuristics for targeted crawling are usually tailored for specific search criterion and could lead to short-sighted crawling decisions. In this paper we propose and evaluate a generic approach for guiding a social network crawler that aims to provide a proper balance between exploration and exploitation based on the recently introduced variant of the Multi-Armed Bandit problem with volatile arms (VMAB). Our approach is general-purpose. In addition, it provides provable performance guarantees. Experimental results indicate that our approach compares favorably with the best existing heuristics on two different domains.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In many cases the best way to find a profile or a set of profiles matching some criteria in a social network is via targeted crawling. An important challenge in targeted crawling is to choose the next profile to explore. Existing heuristics for targeted crawling are usually tailored for specific search criterion and could lead to short-sighted crawling decisions. In this paper we propose and evaluate a generic approach for guiding a social network crawler that aims to provide a proper balance between exploration and exploitation based on the recently introduced variant of the Multi-Armed Bandit problem with volatile arms (VMAB). Our approach is general-purpose. In addition, it provides provable performance guarantees. Experimental results indicate that our approach compares favorably with the best existing heuristics on two different domains.
社交网络查询的强盗算法
在许多情况下,在社交网络中找到符合某些标准的个人资料或一组个人资料的最佳方法是通过目标抓取。目标爬行的一个重要挑战是选择下一个要探索的配置文件。现有的针对目标爬行的启发式算法通常是针对特定的搜索条件量身定制的,可能导致目光短浅的爬行决策。在本文中,我们提出并评估了一种用于指导社交网络爬虫的通用方法,该方法旨在基于最近引入的具有挥发性手臂(VMAB)的多臂强盗问题的变体,在探索和利用之间提供适当的平衡。我们的方法是通用的。此外,它还提供了可证明的性能保证。实验结果表明,我们的方法在两个不同的领域上优于现有的最佳启发式方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信