Multi-parameter estimation of non-salient pole permanent magnet synchronous machines by using evolutionary algorithms

Kan Liu, Z. Zhu, Jing Zhang, Qiao Zhang, A. Shen
{"title":"Multi-parameter estimation of non-salient pole permanent magnet synchronous machines by using evolutionary algorithms","authors":"Kan Liu, Z. Zhu, Jing Zhang, Qiao Zhang, A. Shen","doi":"10.1109/BICTA.2010.5645222","DOIUrl":null,"url":null,"abstract":"This paper describes how to apply evolutionary algorithms (EA) for multi-parameter estimation of non-salient pole permanent magnet synchronous machines (PMSM). The encoding of estimated parameters is firstly described and the design of a penalty function associated with a proposed error analysis for PMSM multi-parameter estimation is then introduced. The PMSM stator winding resistance, dq-axis inductances and rotor flux linkage can be estimated by maximizing the proposed penalty function through evolutionary algorithms such as immune clonal algorithm (ICA), quantum genetic algorithm (QGA) and genetic algorithm (GA). The experimental results show that the proposed strategy has good convergence in simultaneously estimating winding resistance, dq-axis inductances and rotor flux linkage. In addition, the convergence speed of ICA in estimation is compared with GA and QGA, which verifies that the ICA has better performances in global searching. The ability of proposed method for tracking the parameter variation is verified by winding resistance step change and temperature variation experiments at last.","PeriodicalId":302619,"journal":{"name":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Fifth International Conference on Bio-Inspired Computing: Theories and Applications (BIC-TA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BICTA.2010.5645222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

This paper describes how to apply evolutionary algorithms (EA) for multi-parameter estimation of non-salient pole permanent magnet synchronous machines (PMSM). The encoding of estimated parameters is firstly described and the design of a penalty function associated with a proposed error analysis for PMSM multi-parameter estimation is then introduced. The PMSM stator winding resistance, dq-axis inductances and rotor flux linkage can be estimated by maximizing the proposed penalty function through evolutionary algorithms such as immune clonal algorithm (ICA), quantum genetic algorithm (QGA) and genetic algorithm (GA). The experimental results show that the proposed strategy has good convergence in simultaneously estimating winding resistance, dq-axis inductances and rotor flux linkage. In addition, the convergence speed of ICA in estimation is compared with GA and QGA, which verifies that the ICA has better performances in global searching. The ability of proposed method for tracking the parameter variation is verified by winding resistance step change and temperature variation experiments at last.
基于进化算法的非凸极永磁同步电机多参数估计
介绍了如何将进化算法应用于非凸极永磁同步电机的多参数估计。首先描述了估计参数的编码,然后介绍了PMSM多参数估计误差分析的惩罚函数设计。通过免疫克隆算法(ICA)、量子遗传算法(QGA)和遗传算法(GA)等进化算法将罚函数极大化,可以估计PMSM定子绕组电阻、dq轴电感和转子磁链。实验结果表明,该方法在同时估计绕组电阻、dq轴电感和转子磁链方面具有良好的收敛性。此外,将ICA在估计方面的收敛速度与遗传算法和QGA进行了比较,验证了ICA在全局搜索方面具有更好的性能。最后通过绕组电阻阶跃变化和温度变化实验验证了所提方法跟踪参数变化的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信