BaitAlarm: Detecting Phishing Sites Using Similarity in Fundamental Visual Features

Jian Mao, Pei Li, Kun Li, Tao Wei, Zhenkai Liang
{"title":"BaitAlarm: Detecting Phishing Sites Using Similarity in Fundamental Visual Features","authors":"Jian Mao, Pei Li, Kun Li, Tao Wei, Zhenkai Liang","doi":"10.1109/INCoS.2013.151","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that phishing pages need to preserve the visual appearance the target pages. We present an algorithm to quantify the suspicious ratings of web pages based on similarity of visual appearance between the web pages. Since CSS is the standard technique to specify page layout, our solution uses the CSS as the basis for detecting visual similarities among web pages. We prototyped our approach as a Google Chrome extension and used it to rate the suspiciousness of web pages. The prototype shows the correctness and accuracy of our approach with a relatively low performance overhead.","PeriodicalId":353706,"journal":{"name":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 5th International Conference on Intelligent Networking and Collaborative Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INCoS.2013.151","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

Abstract

In this paper, we present a new solution, BaitAlarm, to detect phishing attack using features that are hard to evade. The intuition of our approach is that phishing pages need to preserve the visual appearance the target pages. We present an algorithm to quantify the suspicious ratings of web pages based on similarity of visual appearance between the web pages. Since CSS is the standard technique to specify page layout, our solution uses the CSS as the basis for detecting visual similarities among web pages. We prototyped our approach as a Google Chrome extension and used it to rate the suspiciousness of web pages. The prototype shows the correctness and accuracy of our approach with a relatively low performance overhead.
BaitAlarm:基于基本视觉特征相似性检测钓鱼网站
在本文中,我们提出了一个新的解决方案,BaitAlarm,利用难以逃避的特征来检测网络钓鱼攻击。我们的方法的直觉是,网络钓鱼页面需要保持目标页面的视觉外观。我们提出了一种基于网页之间的视觉外观相似性来量化网页可疑评级的算法。由于CSS是指定页面布局的标准技术,我们的解决方案使用CSS作为检测网页之间视觉相似性的基础。我们将我们的方法原型化为Google Chrome扩展,并用它来评估网页的可疑性。该原型以相对较低的性能开销显示了我们的方法的正确性和准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信