CrowdScreen: algorithms for filtering data with humans

Aditya G. Parameswaran, H. Garcia-Molina, Hyunjung Park, N. Polyzotis, Aditya Ramesh, J. Widom
{"title":"CrowdScreen: algorithms for filtering data with humans","authors":"Aditya G. Parameswaran, H. Garcia-Molina, Hyunjung Park, N. Polyzotis, Aditya Ramesh, J. Widom","doi":"10.1145/2213836.2213878","DOIUrl":null,"url":null,"abstract":"Given a large set of data items, we consider the problem of filtering them based on a set of properties that can be verified by humans. This problem is commonplace in crowdsourcing applications, and yet, to our knowledge, no one has considered the formal optimization of this problem. (Typical solutions use heuristics to solve the problem.) We formally state a few different variants of this problem. We develop deterministic and probabilistic algorithms to optimize the expected cost (i.e., number of questions) and expected error. We experimentally show that our algorithms provide definite gains with respect to other strategies. Our algorithms can be applied in a variety of crowdsourcing scenarios and can form an integral part of any query processor that uses human computation.","PeriodicalId":212616,"journal":{"name":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"249","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2213836.2213878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 249

Abstract

Given a large set of data items, we consider the problem of filtering them based on a set of properties that can be verified by humans. This problem is commonplace in crowdsourcing applications, and yet, to our knowledge, no one has considered the formal optimization of this problem. (Typical solutions use heuristics to solve the problem.) We formally state a few different variants of this problem. We develop deterministic and probabilistic algorithms to optimize the expected cost (i.e., number of questions) and expected error. We experimentally show that our algorithms provide definite gains with respect to other strategies. Our algorithms can be applied in a variety of crowdsourcing scenarios and can form an integral part of any query processor that uses human computation.
CrowdScreen:人工过滤数据的算法
给定一组大数据项,我们考虑基于一组可由人类验证的属性来过滤它们的问题。这个问题在众包应用程序中很常见,然而,据我们所知,没有人考虑过这个问题的正式优化。(典型的解决方案使用启发式方法来解决问题。)我们正式地陈述这个问题的几个不同的变体。我们开发了确定性和概率算法来优化预期成本(即问题数量)和预期误差。我们的实验表明,我们的算法相对于其他策略提供了明确的收益。我们的算法可以应用于各种众包场景,并且可以构成任何使用人工计算的查询处理器的组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信