Tracking of feature points in a scene of moving rigid objects by Bayesian switching structure model with particle filter

N. Ikoma, Yasutake Miyahara, H. Maeda
{"title":"Tracking of feature points in a scene of moving rigid objects by Bayesian switching structure model with particle filter","authors":"N. Ikoma, Yasutake Miyahara, H. Maeda","doi":"10.1109/NNSP.2003.1318071","DOIUrl":null,"url":null,"abstract":"Causal estimation of multiple feature points trajectories by using a switching state space model is proposed. The state vector of the model consists of the position of each feature point, the velocity of each rigid object, and some indicator variables for each feature point. Ther are two types of indicator variables: an object indicator representing the association between the feature point and rigid object, and an aperture indicator representing the attribute of the point, e.g. aperture or not. By estimating the state vector using a Rao-Blackwellized particle filter, smooth trajectories of feature points, velocity of objects, object indicators, and aperture indicators are obtained simultaneously. Performance on a real image sequence is presented by comparing to a Kalman filter being given true indicators.","PeriodicalId":315958,"journal":{"name":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 IEEE XIII Workshop on Neural Networks for Signal Processing (IEEE Cat. No.03TH8718)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NNSP.2003.1318071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Causal estimation of multiple feature points trajectories by using a switching state space model is proposed. The state vector of the model consists of the position of each feature point, the velocity of each rigid object, and some indicator variables for each feature point. Ther are two types of indicator variables: an object indicator representing the association between the feature point and rigid object, and an aperture indicator representing the attribute of the point, e.g. aperture or not. By estimating the state vector using a Rao-Blackwellized particle filter, smooth trajectories of feature points, velocity of objects, object indicators, and aperture indicators are obtained simultaneously. Performance on a real image sequence is presented by comparing to a Kalman filter being given true indicators.
基于粒子滤波的贝叶斯切换结构模型在运动刚体场景中的特征点跟踪
提出了一种基于切换状态空间模型的多特征点轨迹因果估计。模型的状态向量由每个特征点的位置、每个刚体的速度和每个特征点的指示变量组成。指示器变量有两种类型:对象指示器表示特征点与刚体之间的关联,孔径指示器表示点的属性,例如是否有孔径。利用rao - blackwelzed粒子滤波估计状态向量,同时获得特征点、物体速度、物体指标和孔径指标的光滑轨迹。通过与给定真实指标的卡尔曼滤波器进行比较,给出了在真实图像序列上的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信