Automated Prediction of Phishing Websites Using Deep Convolutional Neural Network

K. M. Zubair Hasan, Md. Zahid Hasan, N. Zahan
{"title":"Automated Prediction of Phishing Websites Using Deep Convolutional Neural Network","authors":"K. M. Zubair Hasan, Md. Zahid Hasan, N. Zahan","doi":"10.1109/IC4ME247184.2019.9036647","DOIUrl":null,"url":null,"abstract":"Phishing is one of the ruinous issues encountered by the World Wide Web (WWW) and steers to the financial catastrophes for individuals and businesses. It has been perpetually a perplexing issue to identify phishing attacks with high exactness. The tremendous outcomes in the area of classification have been succeeded by the state-of-the-art invention of the deep convolutional neural networks (DCNNs). This paper is concerned with an accurate identifying approach for web phishing attacks based on deep convolutional neural networks. Our developed model has the ability to classify the attacked phishing websites from legitimate sites. However, due to the limitation of samples in the dataset, other machine learning algorithms (SVM, AdaBoost, Decision Tree, KNN) cannot perform proficiently for analyzing the data. In this respect, our proposed Deep Convolution Neural Network (DCNN) model has an automated approach to predict the phishing sites within the earlier stage. The empirical results show that the overall accuracy of 99% is achieved by the recommended methodology.","PeriodicalId":368690,"journal":{"name":"2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Computer, Communication, Chemical, Materials and Electronic Engineering (IC4ME2)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC4ME247184.2019.9036647","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Phishing is one of the ruinous issues encountered by the World Wide Web (WWW) and steers to the financial catastrophes for individuals and businesses. It has been perpetually a perplexing issue to identify phishing attacks with high exactness. The tremendous outcomes in the area of classification have been succeeded by the state-of-the-art invention of the deep convolutional neural networks (DCNNs). This paper is concerned with an accurate identifying approach for web phishing attacks based on deep convolutional neural networks. Our developed model has the ability to classify the attacked phishing websites from legitimate sites. However, due to the limitation of samples in the dataset, other machine learning algorithms (SVM, AdaBoost, Decision Tree, KNN) cannot perform proficiently for analyzing the data. In this respect, our proposed Deep Convolution Neural Network (DCNN) model has an automated approach to predict the phishing sites within the earlier stage. The empirical results show that the overall accuracy of 99% is achieved by the recommended methodology.
基于深度卷积神经网络的钓鱼网站自动预测
网络钓鱼是万维网(WWW)遇到的破坏性问题之一,并导致个人和企业的金融灾难。如何准确地识别网络钓鱼攻击一直是一个令人困惑的问题。深度卷积神经网络(deep convolutional neural networks, DCNNs)的发明,在分类领域取得了巨大的成果。本文研究了一种基于深度卷积神经网络的网络钓鱼攻击的准确识别方法。我们开发的模型具有将受攻击的钓鱼网站与合法网站进行分类的能力。然而,由于数据集中样本的限制,其他机器学习算法(SVM, AdaBoost, Decision Tree, KNN)无法熟练地进行数据分析。在这方面,我们提出的深度卷积神经网络(DCNN)模型具有在早期阶段自动预测网络钓鱼站点的方法。实证结果表明,所推荐的方法总体准确率达到99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信