Exploiting redundancy to speed up parallel systems

I. Yen, E. Leiss, F. Bastani
{"title":"Exploiting redundancy to speed up parallel systems","authors":"I. Yen, E. Leiss, F. Bastani","doi":"10.1109/88.242445","DOIUrl":null,"url":null,"abstract":"Repetitive fault tolerance takes advantage of redundant processors to offer peak performance during normal execution, and graceful performance degradation when processors fail. As long as one processor is working, the computation can continue. The authors use the underlying principle of inherent fault tolerance, turning redundancy into computation power, to design a model of repetitive fault tolerance that is suitable for dataflow computations. When no processors fail, they all work in parallel to achieve performance almost equal to that of the parallel program without fault tolerance. If processors do fail, the program can still derive the correct result as long as at least one processor is working; failures only slow the computation speed. Repetitive fault tolerance also provides a systematic way to derive fault-tolerant programs.<<ETX>>","PeriodicalId":325213,"journal":{"name":"IEEE Parallel & Distributed Technology: Systems & Applications","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Parallel & Distributed Technology: Systems & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/88.242445","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Repetitive fault tolerance takes advantage of redundant processors to offer peak performance during normal execution, and graceful performance degradation when processors fail. As long as one processor is working, the computation can continue. The authors use the underlying principle of inherent fault tolerance, turning redundancy into computation power, to design a model of repetitive fault tolerance that is suitable for dataflow computations. When no processors fail, they all work in parallel to achieve performance almost equal to that of the parallel program without fault tolerance. If processors do fail, the program can still derive the correct result as long as at least one processor is working; failures only slow the computation speed. Repetitive fault tolerance also provides a systematic way to derive fault-tolerant programs.<>
利用冗余来加速并行系统
重复容错利用冗余处理器在正常执行期间提供峰值性能,并在处理器故障时提供优雅的性能下降。只要有一个处理器在工作,计算就可以继续。作者利用固有容错的基本原理,将冗余转化为计算能力,设计了一个适用于数据流计算的重复容错模型。当没有处理器发生故障时,它们都并行工作,以获得与并行程序几乎相等的性能,而没有容错。如果处理器发生故障,只要至少有一个处理器在工作,程序仍然可以得出正确的结果;失败只会减慢计算速度。重复容错还提供了一种系统的方法来派生容错程序
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信