What is Done is Done: an Incremental Approach to Semantic Shift Detection

Francesco Periti, A. Ferrara, S. Montanelli, M. Ruskov
{"title":"What is Done is Done: an Incremental Approach to Semantic Shift Detection","authors":"Francesco Periti, A. Ferrara, S. Montanelli, M. Ruskov","doi":"10.18653/v1/2022.lchange-1.4","DOIUrl":null,"url":null,"abstract":"Contextual word embedding techniques for semantic shift detection are receiving more and more attention. In this paper, we present What is Done is Done (WiDiD), an incremental approach to semantic shift detection based on incremental clustering techniques and contextual embedding methods to capture the changes over the meanings of a target word along a diachronic corpus. In WiDiD, the word contexts observed in the past are consolidated as a set of clusters that constitute the “memory” of the word meanings observed so far. Such a memory is exploited as a basis for subsequent word observations, so that the meanings observed in the present are stratified over the past ones.","PeriodicalId":120650,"journal":{"name":"Workshop on Computational Approaches to Historical Language Change","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Approaches to Historical Language Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.lchange-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Contextual word embedding techniques for semantic shift detection are receiving more and more attention. In this paper, we present What is Done is Done (WiDiD), an incremental approach to semantic shift detection based on incremental clustering techniques and contextual embedding methods to capture the changes over the meanings of a target word along a diachronic corpus. In WiDiD, the word contexts observed in the past are consolidated as a set of clusters that constitute the “memory” of the word meanings observed so far. Such a memory is exploited as a basis for subsequent word observations, so that the meanings observed in the present are stratified over the past ones.
做了什么就做了:语义移位检测的增量方法
用于语义移位检测的上下文词嵌入技术越来越受到人们的关注。在本文中,我们提出了一种基于增量聚类技术和上下文嵌入方法的增量语义偏移检测方法,以捕获目标词在历时语料库中的意义变化。在WiDiD中,过去观察到的单词上下文被巩固为一组簇,这些簇构成了迄今为止观察到的单词含义的“记忆”。这样的记忆被用作后续单词观察的基础,因此现在观察到的含义与过去的意义相比是分层的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信