Stacked Model with Autoencoder for Financial Time Series Prediction

Haiying Zhang, Qiaomei Liang, Rongqi Wang, Qingqiang Wu
{"title":"Stacked Model with Autoencoder for Financial Time Series Prediction","authors":"Haiying Zhang, Qiaomei Liang, Rongqi Wang, Qingqiang Wu","doi":"10.1109/ICCSE49874.2020.9201745","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a stacked model with autoencoder for financial time series prediction. A stacked autoencoder model is used for feature extraction of high-dimensional stock factors. The factors after dimensionality reduction serve as input to the stacked model to predict the next-day returns of the stocks. In this paper, the stacked autoencoder not only has the effect of reducing the dimension, but also eliminates the redundant information in the data to a certain extent, which can effectively improve the predictive capacity of the model. The constituent stocks of CSI300 are used as backtest samples, and the experiment shows that the stacked model with autoencoder can obtain more than 50% of excess return in 2019.","PeriodicalId":350703,"journal":{"name":"2020 15th International Conference on Computer Science & Education (ICCSE)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 15th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE49874.2020.9201745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we propose a stacked model with autoencoder for financial time series prediction. A stacked autoencoder model is used for feature extraction of high-dimensional stock factors. The factors after dimensionality reduction serve as input to the stacked model to predict the next-day returns of the stocks. In this paper, the stacked autoencoder not only has the effect of reducing the dimension, but also eliminates the redundant information in the data to a certain extent, which can effectively improve the predictive capacity of the model. The constituent stocks of CSI300 are used as backtest samples, and the experiment shows that the stacked model with autoencoder can obtain more than 50% of excess return in 2019.
金融时间序列预测的自编码器叠加模型
本文提出了一种带有自编码器的叠置模型用于金融时间序列预测。采用堆叠式自编码器模型对高维库存因子进行特征提取。降维后的因子作为堆叠模型的输入,用于预测股票次日的收益。在本文中,叠加自编码器不仅具有降维的效果,而且在一定程度上消除了数据中的冗余信息,可以有效地提高模型的预测能力。以CSI300成分股为回测样本,实验表明,自编码器叠加模型在2019年可获得50%以上的超额收益。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信