Sequential covariance intersection-based Kalman consensus filter with intermittent observations

Ning Wang, Yinya Li, Jinliang Cong, A. Sheng
{"title":"Sequential covariance intersection-based Kalman consensus filter with intermittent observations","authors":"Ning Wang, Yinya Li, Jinliang Cong, A. Sheng","doi":"10.1049/iet-spr.2019.0547","DOIUrl":null,"url":null,"abstract":": This paper investigates the distributed state estimation for a class of linear time-varying systems with intermittent observations in sensor networks. Unlike the existing studies in distributed state estimation, this work considers the scenario where the cross-covariances between different sensors are unavailable and the measurements for state estimation encounter intermittent observations and/or random losses. For this practical scenario, a new sequential covariance intersection-based Kalman consensus filer (SCIKCF) is then developed. We show that, with the proposed SCIKCF, each sensor can achieve consensus estimates regardless of the order of fusion. Furthermore, the stability of the SCIKCF as well as the boundedness of the estimation error and the corresponding error covariances are analysed. Finally, three examples are performed to verify the effectiveness of the proposed SCIKCF.","PeriodicalId":272888,"journal":{"name":"IET Signal Process.","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Signal Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/iet-spr.2019.0547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

: This paper investigates the distributed state estimation for a class of linear time-varying systems with intermittent observations in sensor networks. Unlike the existing studies in distributed state estimation, this work considers the scenario where the cross-covariances between different sensors are unavailable and the measurements for state estimation encounter intermittent observations and/or random losses. For this practical scenario, a new sequential covariance intersection-based Kalman consensus filer (SCIKCF) is then developed. We show that, with the proposed SCIKCF, each sensor can achieve consensus estimates regardless of the order of fusion. Furthermore, the stability of the SCIKCF as well as the boundedness of the estimation error and the corresponding error covariances are analysed. Finally, three examples are performed to verify the effectiveness of the proposed SCIKCF.
基于序列协方差交集的间歇观测卡尔曼一致滤波
研究了传感器网络中一类具有间歇观测值的线性时变系统的分布状态估计问题。与现有的分布式状态估计研究不同,这项工作考虑了不同传感器之间的交叉协方差不可用的情况,并且状态估计的测量遇到间歇性观测和/或随机损失。针对这一实际情况,提出了一种新的基于序列协方差交集的卡尔曼一致性滤波器(SCIKCF)。我们表明,使用所提出的SCIKCF,无论融合顺序如何,每个传感器都可以获得共识估计。进一步分析了SCIKCF的稳定性以及估计误差和误差协方差的有界性。最后,通过三个算例验证了所提SCIKCF的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信