Machine Learning Benchmarking for Secured IoT Smart Systems

Mohamed S. Abdalzaher, Mahmoud M. Salim, H. A. Elsayed, M. Fouda
{"title":"Machine Learning Benchmarking for Secured IoT Smart Systems","authors":"Mohamed S. Abdalzaher, Mahmoud M. Salim, H. A. Elsayed, M. Fouda","doi":"10.1109/IoTaIS56727.2022.9975952","DOIUrl":null,"url":null,"abstract":"Smartness and IoT along with machine learning (ML) lead the research directions nowadays. Smart city, smart campus, smart home, smart vehicle, etc; or if we call it “Smart x” will change how the world entities interact among themselves. This paper provides an ML benchmarking as well as a taxonomy that divides its models into linear and non-linear ones based on the problem type (classification or regression), the targeted security issue, the kind of IoT network, and the used evaluation measure. On the other hand, security algorithms enhanced with ML play a significant role to govern the new era of communication. This paper also provides a case study to apply the ML methods to IoT smart campus (SC) as a model to reach a secured IoT system for data collection and manipulation with guided research directions.","PeriodicalId":138894,"journal":{"name":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Internet of Things and Intelligence Systems (IoTaIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IoTaIS56727.2022.9975952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Smartness and IoT along with machine learning (ML) lead the research directions nowadays. Smart city, smart campus, smart home, smart vehicle, etc; or if we call it “Smart x” will change how the world entities interact among themselves. This paper provides an ML benchmarking as well as a taxonomy that divides its models into linear and non-linear ones based on the problem type (classification or regression), the targeted security issue, the kind of IoT network, and the used evaluation measure. On the other hand, security algorithms enhanced with ML play a significant role to govern the new era of communication. This paper also provides a case study to apply the ML methods to IoT smart campus (SC) as a model to reach a secured IoT system for data collection and manipulation with guided research directions.
安全物联网智能系统的机器学习基准测试
智能和物联网以及机器学习引领了当今的研究方向。智慧城市、智慧校园、智能家居、智能汽车等;或者我们称之为“智能x”,它将改变世界实体之间的互动方式。本文提供了一个ML基准测试和一个分类法,该分类法根据问题类型(分类或回归)、目标安全问题、物联网网络类型和使用的评估措施将其模型分为线性和非线性模型。另一方面,机器学习增强的安全算法在管理新时代的通信方面发挥着重要作用。本文还提供了一个案例研究,将机器学习方法应用于物联网智能校园(SC),作为模型,以达到安全的物联网系统,用于数据收集和操作,并指导研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信