A new multi-lanes detection using multi-camera for robust vehicle location

S. Ieng, J. Vrignon, D. Gruyer, D. Aubert
{"title":"A new multi-lanes detection using multi-camera for robust vehicle location","authors":"S. Ieng, J. Vrignon, D. Gruyer, D. Aubert","doi":"10.1109/IVS.2005.1505185","DOIUrl":null,"url":null,"abstract":"This paper deals with a new multi-lane markings detection and tracking system. The proposed system uses multiple cameras positioned differently in order to reduce different kind of perturbations, such as light sensitivity. The algorithm combines robust Kalman filtering and association based on belief theory to achieve multi-object tracking. Thus, the system provides the ability to track lane markings without any assumption on their number. It also proposes a new lane change management. To study this new system, the algorithm has been implemented on an embedded computer equipped with multiple cameras. We present experimental results obtained on a track. These results allow us to show important advantages of this new system and its robustness by comparing it to a classical system.","PeriodicalId":386189,"journal":{"name":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"32","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Proceedings. Intelligent Vehicles Symposium, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2005.1505185","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 32

Abstract

This paper deals with a new multi-lane markings detection and tracking system. The proposed system uses multiple cameras positioned differently in order to reduce different kind of perturbations, such as light sensitivity. The algorithm combines robust Kalman filtering and association based on belief theory to achieve multi-object tracking. Thus, the system provides the ability to track lane markings without any assumption on their number. It also proposes a new lane change management. To study this new system, the algorithm has been implemented on an embedded computer equipped with multiple cameras. We present experimental results obtained on a track. These results allow us to show important advantages of this new system and its robustness by comparing it to a classical system.
一种基于多摄像头的多车道检测方法
本文研究了一种新的多车道标记检测与跟踪系统。该系统使用多个不同位置的摄像头,以减少不同类型的扰动,如光敏度。该算法结合鲁棒卡尔曼滤波和基于信念理论的关联来实现多目标跟踪。因此,该系统提供了跟踪车道标记的能力,而无需对其数字进行任何假设。并提出了一种新的变道管理方法。为了研究这个新系统,该算法已经在一个装有多个摄像头的嵌入式计算机上实现。我们给出了在轨道上得到的实验结果。这些结果使我们能够通过与经典系统的比较来显示新系统的重要优势及其鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信