Victoria Subritzky-Katz, Aaron L. Sampson, Erik E. Emeric, W. Lipski, Sophia Moreira-González, Jorge González-Martínez, S. Sarma, V. Stuphorn, E. Niebur
{"title":"Quantifying Phase- Amplitude Modulation in Neural Data","authors":"Victoria Subritzky-Katz, Aaron L. Sampson, Erik E. Emeric, W. Lipski, Sophia Moreira-González, Jorge González-Martínez, S. Sarma, V. Stuphorn, E. Niebur","doi":"10.1109/CISS56502.2023.10089691","DOIUrl":null,"url":null,"abstract":"Phase-amplitude modulation (the modulation of the amplitude of higher frequency oscillations by the phase of lower frequency oscillations) is a specific type of cross-frequency coupling that has been observed in neural recordings from multiple species in a range of behavioral contexts. Given its potential importance, care must be taken with how it is measured and quantified. Previous studies have quantified phase-amplitude modulation by measuring the distance of the amplitude distribution from a uniform distribution. While this method is of general applicability, it is not targeted to the specific modulation pattern frequently observed with low-frequency oscillations. Here we develop a new method that has increased specificity to detect modulation in the sinusoidal shape commonly observed in neural data.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phase-amplitude modulation (the modulation of the amplitude of higher frequency oscillations by the phase of lower frequency oscillations) is a specific type of cross-frequency coupling that has been observed in neural recordings from multiple species in a range of behavioral contexts. Given its potential importance, care must be taken with how it is measured and quantified. Previous studies have quantified phase-amplitude modulation by measuring the distance of the amplitude distribution from a uniform distribution. While this method is of general applicability, it is not targeted to the specific modulation pattern frequently observed with low-frequency oscillations. Here we develop a new method that has increased specificity to detect modulation in the sinusoidal shape commonly observed in neural data.