MARS: the First Romanian Pollen Dataset using a Rapid-E Particle Analyzer

M. Boldeanu, C. Marin, D. Ene, L. Mărmureanu, H. Cucu, C. Burileanu
{"title":"MARS: the First Romanian Pollen Dataset using a Rapid-E Particle Analyzer","authors":"M. Boldeanu, C. Marin, D. Ene, L. Mărmureanu, H. Cucu, C. Burileanu","doi":"10.1109/sped53181.2021.9587447","DOIUrl":null,"url":null,"abstract":"Pollen allergies are a growing concern for human health. This is why automated pollen monitoring is becoming an important area of research. Machine learning approaches show great promise for tackling this issue but these algorithms need large training data sets to perform well. This study introduces a new pollen data set, obtained using a Rapid-E particle analyzer, that is representative for the flora of Romania. Pollen, from thirteen species present in Romania, was used in developing this database with over 100 thousand samples measured. Our study shows performance similar to or above that of humans in the task of pollen classification on the newly introduced data set using a convolutional neural network.","PeriodicalId":193702,"journal":{"name":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Speech Technology and Human-Computer Dialogue (SpeD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/sped53181.2021.9587447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Pollen allergies are a growing concern for human health. This is why automated pollen monitoring is becoming an important area of research. Machine learning approaches show great promise for tackling this issue but these algorithms need large training data sets to perform well. This study introduces a new pollen data set, obtained using a Rapid-E particle analyzer, that is representative for the flora of Romania. Pollen, from thirteen species present in Romania, was used in developing this database with over 100 thousand samples measured. Our study shows performance similar to or above that of humans in the task of pollen classification on the newly introduced data set using a convolutional neural network.
火星:第一个使用快速e粒子分析仪的罗马尼亚花粉数据集
花粉过敏是人类健康日益关注的问题。这就是为什么自动花粉监测正在成为一个重要的研究领域。机器学习方法在解决这个问题上显示出很大的希望,但这些算法需要大量的训练数据集才能表现良好。本文介绍了一种新的花粉数据集,该数据集是用Rapid-E颗粒分析仪获得的,它代表了罗马尼亚的植物区系。来自罗马尼亚的13个物种的花粉被用于建立这个数据库,测量了超过10万个样本。我们的研究表明,在使用卷积神经网络对新引入的数据集进行花粉分类的任务中,它们的表现与人类相似或更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信