Proving ownership over categorical data

R. Sion
{"title":"Proving ownership over categorical data","authors":"R. Sion","doi":"10.1109/ICDE.2004.1320029","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel method of rights protection for categorical data through watermarking. We discover new watermark embedding channels for relational data with categorical types. We design novel watermark encoding algorithms and analyze important theoretical bounds including mark vulnerability. While fully preserving data quality requirements, our solution survives important attacks, such as subset selection and random alterations. Mark detection is fully \"blind\" in that it doesn't require the original data, an important characteristic especially in the case of massive data. We propose various improvements and alternative encoding methods. We perform validation experiments by watermarking the outsourced Wal-Mart sales data available at our institute. We prove (experimentally and by analysis) our solution to be extremely resilient to both alteration and data loss attacks, for example tolerating up to 80% data loss with a watermark alteration of only 25%.","PeriodicalId":358862,"journal":{"name":"Proceedings. 20th International Conference on Data Engineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"97","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 20th International Conference on Data Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2004.1320029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 97

Abstract

This paper introduces a novel method of rights protection for categorical data through watermarking. We discover new watermark embedding channels for relational data with categorical types. We design novel watermark encoding algorithms and analyze important theoretical bounds including mark vulnerability. While fully preserving data quality requirements, our solution survives important attacks, such as subset selection and random alterations. Mark detection is fully "blind" in that it doesn't require the original data, an important characteristic especially in the case of massive data. We propose various improvements and alternative encoding methods. We perform validation experiments by watermarking the outsourced Wal-Mart sales data available at our institute. We prove (experimentally and by analysis) our solution to be extremely resilient to both alteration and data loss attacks, for example tolerating up to 80% data loss with a watermark alteration of only 25%.
证明对分类数据的所有权
介绍了一种利用水印对分类数据进行版权保护的新方法。我们为具有分类类型的关系数据发现了新的水印嵌入通道。设计了新的水印编码算法,分析了水印脆弱性等重要理论边界。在完全保留数据质量要求的同时,我们的解决方案能够承受重要的攻击,例如子集选择和随机更改。标记检测是完全“盲”的,因为它不需要原始数据,这是一个重要的特征,特别是在海量数据的情况下。我们提出了各种改进和替代编码方法。我们通过对我们研究所提供的外包沃尔玛销售数据进行水印来进行验证实验。我们(通过实验和分析)证明我们的解决方案对更改和数据丢失攻击具有极高的弹性,例如,容忍高达80%的数据丢失,水印更改仅为25%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信