Diversified parameter estimation in complex networks

A. Tajer
{"title":"Diversified parameter estimation in complex networks","authors":"A. Tajer","doi":"10.1109/GlobalSIP.2014.7032251","DOIUrl":null,"url":null,"abstract":"Parameter estimation arises in the operation of many complex networks that are comprised of multiple interdependent sub-networks. Designing parameter estimators depends strongly on the extent of information available about the dynamics of network and the correlation structure among different parameters across the networks. Motivated by the core premise that designing state estimation models become more challenging as the networks grow in scale and complexity (primarily due to increasing interconnections in complex networks) identifying the best estimation model becomes increasingly challenging. By capitalizing on the measurements diversity in the complex networks, this paper proposes a learning-based framework for 1) dynamically identifying the best estimation model from a group of candidates for each subnetwork, and 2) aggregating the local estimates in order to form a globally optimal one. The analysis reveals that the framework is capable of providing a performance that has a diminishing gap with that of the best estimation model for each subnetwork without requiring any information about network dynamics.","PeriodicalId":362306,"journal":{"name":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GlobalSIP.2014.7032251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Parameter estimation arises in the operation of many complex networks that are comprised of multiple interdependent sub-networks. Designing parameter estimators depends strongly on the extent of information available about the dynamics of network and the correlation structure among different parameters across the networks. Motivated by the core premise that designing state estimation models become more challenging as the networks grow in scale and complexity (primarily due to increasing interconnections in complex networks) identifying the best estimation model becomes increasingly challenging. By capitalizing on the measurements diversity in the complex networks, this paper proposes a learning-based framework for 1) dynamically identifying the best estimation model from a group of candidates for each subnetwork, and 2) aggregating the local estimates in order to form a globally optimal one. The analysis reveals that the framework is capable of providing a performance that has a diminishing gap with that of the best estimation model for each subnetwork without requiring any information about network dynamics.
复杂网络中的多元参数估计
参数估计出现在由多个相互依赖的子网络组成的复杂网络的运行中。参数估计器的设计很大程度上取决于网络动态信息的可用程度以及网络中不同参数之间的相关结构。随着网络规模和复杂性的增长(主要是由于复杂网络中互连的增加),设计状态估计模型变得越来越具有挑战性,这一核心前提使识别最佳估计模型变得越来越具有挑战性。利用复杂网络中测量值的多样性,提出了一种基于学习的框架:1)从一组候选子网络中动态识别最佳估计模型;2)汇总局部估计以形成全局最优估计。分析表明,该框架能够在不需要任何网络动态信息的情况下,为每个子网提供与最佳估计模型的性能差距越来越小的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信