{"title":"PHASE BEHAVIOR AND IN-SITU DENSITY DETERMINATION IN CONCENTRATED SALT SOLUTIONS UNDER HYDROTHERMAL CONDITIONS","authors":"G. Anderson","doi":"10.1615/icpws-1994.730","DOIUrl":null,"url":null,"abstract":"An optical cell was constructed to observe phase behavior in aqueous electrolyte solutions at temperatures up to 450{degrees}C and pressures up to 1200 bar. The goal was to map out the single-phase region for a certain concentrated, multicomponent waste solution, to aid in the design of a treatment facility. The imaging system could also measure the refractive index of the fluid, allowing the density to be determined by means of the Lorentz-Lorenz relationship. The validity of the technique was verified for pure water and for NaCl-water systems. Data for a multicomponent system is present as a family plot of density vs. pressure, for several different temperatures, with the lowest pressure on each plot corresponding to a phase boundary. Data is also presented for the binary system NaNO{sub 3}-water.","PeriodicalId":121185,"journal":{"name":"Proceeding of Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceeding of Physical Chemistry of Aqueous Systems: Meeting the Needs of Industry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1615/icpws-1994.730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
An optical cell was constructed to observe phase behavior in aqueous electrolyte solutions at temperatures up to 450{degrees}C and pressures up to 1200 bar. The goal was to map out the single-phase region for a certain concentrated, multicomponent waste solution, to aid in the design of a treatment facility. The imaging system could also measure the refractive index of the fluid, allowing the density to be determined by means of the Lorentz-Lorenz relationship. The validity of the technique was verified for pure water and for NaCl-water systems. Data for a multicomponent system is present as a family plot of density vs. pressure, for several different temperatures, with the lowest pressure on each plot corresponding to a phase boundary. Data is also presented for the binary system NaNO{sub 3}-water.