LNL polycategories and doctrines of linear logic

Michael Shulman
{"title":"LNL polycategories and doctrines of linear logic","authors":"Michael Shulman","doi":"10.46298/lmcs-19(2:1)2023","DOIUrl":null,"url":null,"abstract":"We define and study LNL polycategories, which abstract the judgmental\nstructure of classical linear logic with exponentials. Many existing structures\ncan be represented as LNL polycategories, including LNL adjunctions, linear\nexponential comonads, LNL multicategories, IL-indexed categories, linearly\ndistributive categories with storage, commutative and strong monads,\nCBPV-structures, models of polarized calculi, Freyd-categories, and skew\nmulticategories, as well as ordinary cartesian, symmetric, and planar\nmulticategories and monoidal categories, symmetric polycategories, and linearly\ndistributive and *-autonomous categories. To study such classes of structures\nuniformly, we define a notion of LNL doctrine, such that each of these classes\nof structures can be identified with the algebras for some such doctrine. We\nshow that free algebras for LNL doctrines can be presented by a sequent\ncalculus, and that every morphism of doctrines induces an adjunction between\ntheir 2-categories of algebras.","PeriodicalId":314387,"journal":{"name":"Log. Methods Comput. Sci.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Log. Methods Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/lmcs-19(2:1)2023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We define and study LNL polycategories, which abstract the judgmental structure of classical linear logic with exponentials. Many existing structures can be represented as LNL polycategories, including LNL adjunctions, linear exponential comonads, LNL multicategories, IL-indexed categories, linearly distributive categories with storage, commutative and strong monads, CBPV-structures, models of polarized calculi, Freyd-categories, and skew multicategories, as well as ordinary cartesian, symmetric, and planar multicategories and monoidal categories, symmetric polycategories, and linearly distributive and *-autonomous categories. To study such classes of structures uniformly, we define a notion of LNL doctrine, such that each of these classes of structures can be identified with the algebras for some such doctrine. We show that free algebras for LNL doctrines can be presented by a sequent calculus, and that every morphism of doctrines induces an adjunction between their 2-categories of algebras.
LNL多范畴与线性逻辑原理
我们定义并研究了LNL多范畴,它抽象了经典指数线性逻辑的判断结构。许多现有的结构都可以被表示为LNL多范畴,包括LNL共轭、线性指数共子、LNL多范畴、il索引范畴、具有存储的线性分布范畴、交换和强单子、cbpv结构、极化微积分模型、freyd范畴和偏态多范畴,以及普通笛卡儿、对称、平面多范畴和一元范畴、对称多范畴。线性分布和自治范畴。为了统一地研究这类结构,我们定义了LNL学说的概念,使得这类结构中的每一类都可以用某些学说的代数来标识。证明了LNL学说的自由代数可以用序列演算表示,并且学说的每一个态射在它们的两类代数之间都有一个附加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信