Feature extraction based on principal component analysis for text categorization

Safae Lhazmir, Ismail El Moudden, A. Kobbane
{"title":"Feature extraction based on principal component analysis for text categorization","authors":"Safae Lhazmir, Ismail El Moudden, A. Kobbane","doi":"10.23919/PEMWN.2017.8308030","DOIUrl":null,"url":null,"abstract":"Over the past 20 years, data has increased in a large scale in various fields. Internet of Things (IoT), for instance, comprises billions of devices and the data streams coming from these devices challenge the traditional approaches to data management and contribute to the emerging paradigm of big data. To be able to handle such data adequately, it is necessary to reduce their dimensionality to a size more compatible with the resolution methods, even if this reduction can lead to a slight loss of information. The aim of this paper is to study the potential of dimensionality reduction in text categorization of a publicly available dataset CNAE-9.","PeriodicalId":383978,"journal":{"name":"2017 International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Performance Evaluation and Modeling in Wired and Wireless Networks (PEMWN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/PEMWN.2017.8308030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Over the past 20 years, data has increased in a large scale in various fields. Internet of Things (IoT), for instance, comprises billions of devices and the data streams coming from these devices challenge the traditional approaches to data management and contribute to the emerging paradigm of big data. To be able to handle such data adequately, it is necessary to reduce their dimensionality to a size more compatible with the resolution methods, even if this reduction can lead to a slight loss of information. The aim of this paper is to study the potential of dimensionality reduction in text categorization of a publicly available dataset CNAE-9.
基于主成分分析的文本分类特征提取
在过去的20年里,各个领域的数据都在大规模地增加。例如,物联网(IoT)由数十亿台设备组成,来自这些设备的数据流挑战了传统的数据管理方法,并促成了新兴的大数据范式。为了能够充分地处理这些数据,有必要将它们的维数降低到与分辨率方法更兼容的大小,即使这种降低可能导致信息的轻微丢失。本文的目的是研究公共数据集CNAE-9文本分类中降维的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信