Modeling consumer loan default prediction using ensemble neural networks

Amira Kamil Ibrahim Hassan, A. Abraham
{"title":"Modeling consumer loan default prediction using ensemble neural networks","authors":"Amira Kamil Ibrahim Hassan, A. Abraham","doi":"10.1109/ICCEEE.2013.6634029","DOIUrl":null,"url":null,"abstract":"In this paper, a loan default prediction model is constricted using three different training algorithms, to train a supervised two-layer feed-forward network to produce the prediction model. But first, two attribute filtering functions were used, resulting in two data sets with reduced attributes and the original data-set. Back propagation based learning algorithms was used for training the network. The neural networks are trained using real world credit application cases from a German bank datasets which has 1000 cases; each case with 24 numerical attributes; upon, which the decision is based. The aim of this paper was to compare between the resulting models produced from using different training algorithms, scaled conjugate gradient backpropagation, Levenberg-Marquardt algorithm, One-step secant backpropagation (SCG, LM and OSS) and an ensemble of SCG, LM and OSS. Empirical results indicate that training algorithms improve the design of a loan default prediction model and ensemble model works better than the individual models.","PeriodicalId":256793,"journal":{"name":"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)","volume":"51 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 INTERNATIONAL CONFERENCE ON COMPUTING, ELECTRICAL AND ELECTRONIC ENGINEERING (ICCEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCEEE.2013.6634029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

In this paper, a loan default prediction model is constricted using three different training algorithms, to train a supervised two-layer feed-forward network to produce the prediction model. But first, two attribute filtering functions were used, resulting in two data sets with reduced attributes and the original data-set. Back propagation based learning algorithms was used for training the network. The neural networks are trained using real world credit application cases from a German bank datasets which has 1000 cases; each case with 24 numerical attributes; upon, which the decision is based. The aim of this paper was to compare between the resulting models produced from using different training algorithms, scaled conjugate gradient backpropagation, Levenberg-Marquardt algorithm, One-step secant backpropagation (SCG, LM and OSS) and an ensemble of SCG, LM and OSS. Empirical results indicate that training algorithms improve the design of a loan default prediction model and ensemble model works better than the individual models.
使用集成神经网络对消费者贷款违约预测建模
本文使用三种不同的训练算法约束贷款违约预测模型,训练一个有监督的两层前馈网络来生成预测模型。但首先使用了两个属性过滤函数,得到了两个属性约简的数据集和原始数据集。采用基于反向传播的学习算法对网络进行训练。神经网络使用来自德国银行数据集的真实信贷申请案例进行训练,该数据集有1000个案例;每个case有24个数值属性;这是决定的基础。本文的目的是比较使用不同的训练算法,缩放共轭梯度反向传播,Levenberg-Marquardt算法,一步割线反向传播(SCG, LM和OSS)和SCG, LM和OSS的集合产生的结果模型。实证结果表明,训练算法改善了贷款违约预测模型的设计,集成模型比单个模型效果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信