Random Hyperplanes, Generalized Singular Values & “What’s My β?”

A. Edelman, Bernie Wang
{"title":"Random Hyperplanes, Generalized Singular Values & “What’s My β?”","authors":"A. Edelman, Bernie Wang","doi":"10.1109/SSP.2018.8450833","DOIUrl":null,"url":null,"abstract":"We streamline the treatment of the Jacobi ensemble from random matrix theory by providing a succinct geometric characterization which may be used directly to compute the Jacobi ensemble distribution without unnecessary matrix baggage traditionally seen in the MANOVA formulation. Algebraically the Jacobi ensemble naturally corresponds to the Generalized Singular Value Decomposition from the field of Numerical Linear Algebra. We further provide a clear geometric interpretation for the Selberg constant in front of the distribution which may sensibly be defined even beyond the reals, complexes, and quaternions. On the application side, we propose a new learning problem where one estimates a $\\beta $ that best fits the sample eigenvalues from the Jacobi ensemble.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We streamline the treatment of the Jacobi ensemble from random matrix theory by providing a succinct geometric characterization which may be used directly to compute the Jacobi ensemble distribution without unnecessary matrix baggage traditionally seen in the MANOVA formulation. Algebraically the Jacobi ensemble naturally corresponds to the Generalized Singular Value Decomposition from the field of Numerical Linear Algebra. We further provide a clear geometric interpretation for the Selberg constant in front of the distribution which may sensibly be defined even beyond the reals, complexes, and quaternions. On the application side, we propose a new learning problem where one estimates a $\beta $ that best fits the sample eigenvalues from the Jacobi ensemble.
随机超平面、广义奇异值与“我的β是什么?”
我们通过提供一个简洁的几何表征来简化随机矩阵理论对Jacobi集合的处理,该表征可以直接用于计算Jacobi集合分布,而不需要传统上在方差分析公式中看到的不必要的矩阵包袱。在代数上,雅可比系综自然对应于数值线性代数领域的广义奇异值分解。我们进一步为分布前面的Selberg常数提供了一个清晰的几何解释,该分布甚至可以在实数、复数和四元数之外合理地定义。在应用方面,我们提出了一个新的学习问题,其中估计一个最适合Jacobi集合的样本特征值的$\beta $。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信