{"title":"Automatic Risk-based Selective Redundancy for Fault-tolerant Task-parallel HPC Applications","authors":"Omer Subasi, O. Unsal, S. Krishnamoorthy","doi":"10.1145/3152041.3152083","DOIUrl":null,"url":null,"abstract":"Silent data corruption (SDC) and fail-stop errors are the most hazardous error types in high-performance computing (HPC) systems. In this study, we present an automatic, efficient and lightweight redundancy mechanism to mitigate both error types. We propose partial task-replication and checkpointing for task-parallel HPC applications to mitigate silent and fail-stop errors. To avoid the prohibitive costs of complete replication, we introduce a lightweight selective replication mechanism. Using a fully automatic and transparent heuristics, we identify and selectively replicate only the reliability-critical tasks based on a risk metric. Our approach detects and corrects around 70% of silent errors with only 5% average performance overhead. Additionally, the performance overhead of the heuristic itself is negligible.","PeriodicalId":102432,"journal":{"name":"Proceedings of the Third International Workshop on Extreme Scale Programming Models and Middleware","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third International Workshop on Extreme Scale Programming Models and Middleware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3152041.3152083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
Silent data corruption (SDC) and fail-stop errors are the most hazardous error types in high-performance computing (HPC) systems. In this study, we present an automatic, efficient and lightweight redundancy mechanism to mitigate both error types. We propose partial task-replication and checkpointing for task-parallel HPC applications to mitigate silent and fail-stop errors. To avoid the prohibitive costs of complete replication, we introduce a lightweight selective replication mechanism. Using a fully automatic and transparent heuristics, we identify and selectively replicate only the reliability-critical tasks based on a risk metric. Our approach detects and corrects around 70% of silent errors with only 5% average performance overhead. Additionally, the performance overhead of the heuristic itself is negligible.