UAV Velocity Prediction Using Audio data

E. Bang, Y. Seo, Jeongyoun Seo, Raymond Zeng, A. Niang, Yaqin Wang, E. Matson
{"title":"UAV Velocity Prediction Using Audio data","authors":"E. Bang, Y. Seo, Jeongyoun Seo, Raymond Zeng, A. Niang, Yaqin Wang, E. Matson","doi":"10.1109/IRC55401.2022.00062","DOIUrl":null,"url":null,"abstract":"The Federal Aviation Administration (FAA) set the Unmanned Aerial Vehicles (UAV) speed limit at 100 mph. This research focused on detecting when the UAV exceeds a speed limit for an experiment and using the sound dataset to predict the velocity of a UAV. It is hard to detect a malicious UAV, but we can assume that a UAV over 100 mph is most likely malicious. An indoor environment will be used as a controlled environment and the dataset is divided into two classes: slow (0- 9mph) and fast (over 10mph). Support Vector Machine (SVM), Random Forest, and Light Gradient Boosting Machine (LGBM) were the Machine Learning models used for this research, and Convolutional Neural Network (CNN) was the Deep Learning model used for this research. The result shows that the CNN model has the highest performance (F-1 score: 1.0, Accuracy: 1.0, Recall: 1.0, Precision: 1.0) for classifying the sound of the UAV speed.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"183 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Federal Aviation Administration (FAA) set the Unmanned Aerial Vehicles (UAV) speed limit at 100 mph. This research focused on detecting when the UAV exceeds a speed limit for an experiment and using the sound dataset to predict the velocity of a UAV. It is hard to detect a malicious UAV, but we can assume that a UAV over 100 mph is most likely malicious. An indoor environment will be used as a controlled environment and the dataset is divided into two classes: slow (0- 9mph) and fast (over 10mph). Support Vector Machine (SVM), Random Forest, and Light Gradient Boosting Machine (LGBM) were the Machine Learning models used for this research, and Convolutional Neural Network (CNN) was the Deep Learning model used for this research. The result shows that the CNN model has the highest performance (F-1 score: 1.0, Accuracy: 1.0, Recall: 1.0, Precision: 1.0) for classifying the sound of the UAV speed.
利用音频数据进行无人机速度预测
美国联邦航空管理局(FAA)将无人驾驶飞行器(UAV)的速度限制设定为每小时100英里。本研究的重点是在实验中检测无人机何时超过速度限制,并使用声音数据集预测无人机的速度。很难检测到恶意无人机,但我们可以假设超过100英里/小时的无人机最有可能是恶意的。室内环境将被用作受控环境,数据集分为两类:慢速(0- 9英里/小时)和快速(超过10英里/小时)。支持向量机(SVM)、随机森林(Random Forest)和光梯度增强机(Light Gradient Boosting Machine, LGBM)是本研究使用的机器学习模型,卷积神经网络(Convolutional Neural Network, CNN)是本研究使用的深度学习模型。结果表明,CNN模型对无人机航速声音的分类性能最高(F-1分:1.0,准确率:1.0,召回率:1.0,精度:1.0)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信