Probabilistic method to determine human subjects for low-resolution thermal imaging sensor

Yongwoo Jeong, Kwanwoo Yoon, KyoungHo Joung
{"title":"Probabilistic method to determine human subjects for low-resolution thermal imaging sensor","authors":"Yongwoo Jeong, Kwanwoo Yoon, KyoungHo Joung","doi":"10.1109/SAS.2014.6798925","DOIUrl":null,"url":null,"abstract":"In this work, we present a method of determining human subjects via a low-resolution thermal imaging sensor. Since the image quality of the low-resolution thermal imaging sensor could be suffering from heat signatures and recognizable patterns of human subjects are unable to be determined due to resolution issues, it is recommended to employ a probabilistic method. This paper presents how human subjects can be expressed in terms of pixel size, standard deviation, label movement, vector tracking, label lifetime and a rewarding system based on those. Various pre and post-image processing methods will be covered including background collection, Gaussian filtering, segmentation, local/global adaptive threshold and background learning.","PeriodicalId":125872,"journal":{"name":"2014 IEEE Sensors Applications Symposium (SAS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2014.6798925","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

In this work, we present a method of determining human subjects via a low-resolution thermal imaging sensor. Since the image quality of the low-resolution thermal imaging sensor could be suffering from heat signatures and recognizable patterns of human subjects are unable to be determined due to resolution issues, it is recommended to employ a probabilistic method. This paper presents how human subjects can be expressed in terms of pixel size, standard deviation, label movement, vector tracking, label lifetime and a rewarding system based on those. Various pre and post-image processing methods will be covered including background collection, Gaussian filtering, segmentation, local/global adaptive threshold and background learning.
低分辨率热成像传感器人体受试者的概率确定方法
在这项工作中,我们提出了一种通过低分辨率热成像传感器确定人体受试者的方法。由于低分辨率热成像传感器的图像质量可能会受到热信号的影响,并且由于分辨率问题无法确定人体受试者的可识别模式,因此建议采用概率方法。本文介绍了人类受试者如何在像素大小、标准差、标签运动、矢量跟踪、标签寿命和基于这些的奖励系统方面进行表达。各种图像预处理和后处理方法将包括背景采集,高斯滤波,分割,局部/全局自适应阈值和背景学习。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信