Dynamic Risk Measures for Finite-State Partially Observable Markov Decision Problems

Jingnan Fan, A. Ruszczynski
{"title":"Dynamic Risk Measures for Finite-State Partially Observable Markov Decision Problems","authors":"Jingnan Fan, A. Ruszczynski","doi":"10.1137/1.9781611974072.22","DOIUrl":null,"url":null,"abstract":"In this paper, we provide a theory of time-consistent dynamic risk measures for finite-state partially observable Markov decision problems. By employing our new concept of stochastic conditional time consistency, we show that such dynamic risk measures have a special structure, given by transition risk mappings as risk measures on the space of functionals on the observable state space only. Moreover, these mappings enjoy a strong monotonicity with respect to first order stochastic dominance.","PeriodicalId":193106,"journal":{"name":"SIAM Conf. on Control and its Applications","volume":"453 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Conf. on Control and its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611974072.22","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, we provide a theory of time-consistent dynamic risk measures for finite-state partially observable Markov decision problems. By employing our new concept of stochastic conditional time consistency, we show that such dynamic risk measures have a special structure, given by transition risk mappings as risk measures on the space of functionals on the observable state space only. Moreover, these mappings enjoy a strong monotonicity with respect to first order stochastic dominance.
有限状态部分可观察马尔可夫决策问题的动态风险度量
本文给出了有限状态部分可观察马尔可夫决策问题的时间一致动态风险测度理论。通过引入随机条件时间一致性的新概念,我们证明了这种动态风险测度具有特殊的结构,由转移风险映射给出了仅在可观测状态空间上泛函空间上的风险测度。此外,这些映射相对于一阶随机优势具有很强的单调性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信