A learning algorithm of multilaver dynamics associative neural network based on generalized hebb rule

Yi-fei Pu, Ke Liao, Jiliu Zhou
{"title":"A learning algorithm of multilaver dynamics associative neural network based on generalized hebb rule","authors":"Yi-fei Pu, Ke Liao, Jiliu Zhou","doi":"10.1109/ICIMA.2004.1384314","DOIUrl":null,"url":null,"abstract":"Albrrad-Multilay erdynsm*sarsocia tivenwraln~ork~~ is a spa.cjoint random architeeturr with feedback The neees~~ly for the existem of the architffhup show that the research for synaptic weight haining ip in need. In the Gmt, the pap analyzes the differenoe between Inultilayer dynamics dtive network with double layer associative nymo'y network, BS well as the resemblance with discrete Hopfield nehvork by physics model Then, it proves the stability of !earning Plgorithm of multilayer dynamics associatiVe nehvork based on genernlhed Hebb rule in mathematics The 6mulahi.e experiment for the algorithm getr 6ne result and SOW a fundamental Bue of muhilayer .dynamiw dhe nerve in enginewing praciicea and researeh in \"ly. IkTm-MukiLpw-eGenemlired Hebb rule, Discmte Hopfipldnehwrk, SynrIpbc wpigks Lyqunov fdn I. QUES~ONTO~~~~OUI","PeriodicalId":375056,"journal":{"name":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 International Conference on Intelligent Mechatronics and Automation, 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIMA.2004.1384314","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Albrrad-Multilay erdynsm*sarsocia tivenwraln~ork~~ is a spa.cjoint random architeeturr with feedback The neees~~ly for the existem of the architffhup show that the research for synaptic weight haining ip in need. In the Gmt, the pap analyzes the differenoe between Inultilayer dynamics dtive network with double layer associative nymo'y network, BS well as the resemblance with discrete Hopfield nehvork by physics model Then, it proves the stability of !earning Plgorithm of multilayer dynamics associatiVe nehvork based on genernlhed Hebb rule in mathematics The 6mulahi.e experiment for the algorithm getr 6ne result and SOW a fundamental Bue of muhilayer .dynamiw dhe nerve in enginewing praciicea and researeh in "ly. IkTm-MukiLpw-eGenemlired Hebb rule, Discmte Hopfipldnehwrk, SynrIpbc wpigks Lyqunov fdn I. QUES~ONTO~~~~OUI
基于广义hebb规则的多层动态关联神经网络学习算法
albrad - multilay dysm *sarsocia tivenvaln ~ work ~是一个spa。有反馈的联合随机架构器的存在表明对突触权值训练的研究是有必要的。在Gmt中,通过物理模型分析了多层动态关联网络与双层关联同名网络的区别,以及与离散Hopfield网络的相似之处,证明了数学中基于广义Hebb规则的多层动态关联网络学习算法的稳定性。对该算法进行了实验,取得了良好的效果,为多层动态神经的工程实践和理论研究奠定了基础。[1] [m] - [m] - [m] - [m] - [m] - [m] - [p] - [p] - [p] - [p] - [p] - [p] - [p] - [p] - [p] - [p] -
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信