A Daubechies wavelet transformation to optimize modeling calibration of active compound on drug plants

A. A. Rohmawati, Adiwijaya
{"title":"A Daubechies wavelet transformation to optimize modeling calibration of active compound on drug plants","authors":"A. A. Rohmawati, Adiwijaya","doi":"10.1109/ICOICT.2017.8074666","DOIUrl":null,"url":null,"abstract":"In modeling calibration, a dependency among predictor variables becomes major problem resulting in a not unique given model parameter estimation. This problem may degrade the performance value of the calibration model. A concentration of drug's active compound in 20 locations involving the proceeds percent transmittance observed at 1866 wavelengths as a predictor variable. The magnitude of the dimensions of the predictor variables do not guarantee the independency between variables. PCA or PLS become a mainstay method from several researches to overcome dependency by reducing the dimensions of the predictor variables. The information reduction process by wavelet becomes a major concern. A Daubechies wavelet is able to caover a polynomial trend, while the Haar wavelet is discontinuous function. In this paper, we investigate the Daubechiese and Haar wavelet perfomance to handle multi-dependency in case of overdimension on calibration model. Moreover, the performance of Haar and Daubechies may be assessed through the RMSEP regression model. The dimension reduction process through Daubechies wavelet provides better prediction accuracy of calibration models than PCA or PLS.","PeriodicalId":244500,"journal":{"name":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 5th International Conference on Information and Communication Technology (ICoIC7)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOICT.2017.8074666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In modeling calibration, a dependency among predictor variables becomes major problem resulting in a not unique given model parameter estimation. This problem may degrade the performance value of the calibration model. A concentration of drug's active compound in 20 locations involving the proceeds percent transmittance observed at 1866 wavelengths as a predictor variable. The magnitude of the dimensions of the predictor variables do not guarantee the independency between variables. PCA or PLS become a mainstay method from several researches to overcome dependency by reducing the dimensions of the predictor variables. The information reduction process by wavelet becomes a major concern. A Daubechies wavelet is able to caover a polynomial trend, while the Haar wavelet is discontinuous function. In this paper, we investigate the Daubechiese and Haar wavelet perfomance to handle multi-dependency in case of overdimension on calibration model. Moreover, the performance of Haar and Daubechies may be assessed through the RMSEP regression model. The dimension reduction process through Daubechies wavelet provides better prediction accuracy of calibration models than PCA or PLS.
基于小波变换的药用植物活性化合物建模标定方法研究
在模型标定中,预测变量之间的依赖关系是导致模型参数估计不唯一的主要问题。这个问题可能会降低校准模型的性能值。药物活性化合物在20个位置的浓度,包括在1866波长观察到的收益百分比透射率作为预测变量。预测变量的维度大小不能保证变量之间的独立性。通过降低预测变量的维数来克服依赖,PCA或PLS成为一些研究的主流方法。小波信息约简过程成为人们关注的焦点。Daubechies小波能够覆盖多项式趋势,而Haar小波是不连续函数。在本文中,我们研究了Daubechiese和Haar小波在校正模型上处理过维情况下的多重依赖的性能。此外,Haar和Daubechies的性能可以通过RMSEP回归模型进行评估。通过Daubechies小波降维处理,校正模型的预测精度优于PCA或PLS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信