SupRes: Facial Image Upscaling Using Sparse Denoising Autoencoder

Manan Agrawal, M. Anwar, Nakul Saroha, Anurag Goel
{"title":"SupRes: Facial Image Upscaling Using Sparse Denoising Autoencoder","authors":"Manan Agrawal, M. Anwar, Nakul Saroha, Anurag Goel","doi":"10.1109/ICCMC56507.2023.10083628","DOIUrl":null,"url":null,"abstract":"Even in this era of digital images, still many images and media are hazy, pixelated, and blurry. This could be due to low-quality imaging sensors, poor image stabilization, or the image itself being old. This study proposes the Sparse Denoising Autoencoders (SDAEs) for upscaling blurry images. The performance of the proposed SDAEs is then compared with the deep learning architecture, Pix2Pix Generative Adversarial Networks (GANs) by primarily focusing on the facial images. The experimental results show that the SDAEs give slightly better results than GANs. Additionally, the SDAE architecture is computationally 30% efficient when compared to the Pix2Pix GAN.","PeriodicalId":197059,"journal":{"name":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 7th International Conference on Computing Methodologies and Communication (ICCMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCMC56507.2023.10083628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Even in this era of digital images, still many images and media are hazy, pixelated, and blurry. This could be due to low-quality imaging sensors, poor image stabilization, or the image itself being old. This study proposes the Sparse Denoising Autoencoders (SDAEs) for upscaling blurry images. The performance of the proposed SDAEs is then compared with the deep learning architecture, Pix2Pix Generative Adversarial Networks (GANs) by primarily focusing on the facial images. The experimental results show that the SDAEs give slightly better results than GANs. Additionally, the SDAE architecture is computationally 30% efficient when compared to the Pix2Pix GAN.
使用稀疏去噪自编码器的面部图像升级
即使在这个数字图像的时代,仍然有许多图像和媒体是模糊的,像素化的,模糊的。这可能是由于低质量的成像传感器,较差的图像稳定,或图像本身是旧的。本研究提出稀疏去噪自编码器(SDAEs)用于模糊图像的升级。然后,通过主要关注面部图像,将所提出的SDAEs的性能与深度学习架构Pix2Pix生成对抗网络(GANs)进行比较。实验结果表明,SDAEs的效果略好于gan。此外,与Pix2Pix GAN相比,SDAE架构的计算效率为30%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信