{"title":"Introductory Chapter: Development of Assessment Models to Support Pollution Preventive and Control Decisions","authors":"Rehab O. Abdel Rahman","doi":"10.5772/INTECHOPEN.83822","DOIUrl":null,"url":null,"abstract":"The continuous increase in human activities affects the environment in notable ways; these effects need to be monitored and controlled when appropriate to ensure the sustainability of our lives. Environmental pollution is one of the major problems that associate these activities; it is initiated when a substance is released into the environment in a way that prevents its natural restoration [1, 2]. These releases could be classified as planned and uncontrolled releases. The first class is a part of routine human activity where discharge is performed after complying with the regulatory requirements, whereas uncontrolled releases associate accidents and nonregulated activities [1]. Uncontrolled releases and historical practices have led to several contamination problems, so restoration or remediation programs are being initiated to control these problems from spreading [2]. Currently, preventing and controlling environmental pollution and restoration of affected environmental systems receive great attention globally. This attention was translated into issuing strengthen regulations and allocating natural and human resources to support pollution prevention and control activities. In this respect, a continuous increase in research efforts was dedicated to investigate new materials and/or systems to evaluate their potential applications in preventing and controlling environmental pollution, that is, wastewater, gaseous, and solid waste management, and in and ex situ remediation projects. Table 1 lists some pollution control and prevention systems and their classifications in terms of the scientific bases of the used technologies. These investigations are supported with enormous efforts to understand, simulate, predict, and decide on the performance of these materials and systems under predefined conditions using wide range of models. In this context, kinetic models are applied to:","PeriodicalId":270769,"journal":{"name":"Kinetic Modeling for Environmental Systems","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinetic Modeling for Environmental Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/INTECHOPEN.83822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The continuous increase in human activities affects the environment in notable ways; these effects need to be monitored and controlled when appropriate to ensure the sustainability of our lives. Environmental pollution is one of the major problems that associate these activities; it is initiated when a substance is released into the environment in a way that prevents its natural restoration [1, 2]. These releases could be classified as planned and uncontrolled releases. The first class is a part of routine human activity where discharge is performed after complying with the regulatory requirements, whereas uncontrolled releases associate accidents and nonregulated activities [1]. Uncontrolled releases and historical practices have led to several contamination problems, so restoration or remediation programs are being initiated to control these problems from spreading [2]. Currently, preventing and controlling environmental pollution and restoration of affected environmental systems receive great attention globally. This attention was translated into issuing strengthen regulations and allocating natural and human resources to support pollution prevention and control activities. In this respect, a continuous increase in research efforts was dedicated to investigate new materials and/or systems to evaluate their potential applications in preventing and controlling environmental pollution, that is, wastewater, gaseous, and solid waste management, and in and ex situ remediation projects. Table 1 lists some pollution control and prevention systems and their classifications in terms of the scientific bases of the used technologies. These investigations are supported with enormous efforts to understand, simulate, predict, and decide on the performance of these materials and systems under predefined conditions using wide range of models. In this context, kinetic models are applied to: