Unsupervised camera pose estimation through human mesh recovery

Nicola Garau, N. Conci
{"title":"Unsupervised camera pose estimation through human mesh recovery","authors":"Nicola Garau, N. Conci","doi":"10.1145/3349801.3357138","DOIUrl":null,"url":null,"abstract":"Camera resectioning is essential in computer vision and 3D reconstruction to estimate the position of matching pinhole cameras in 3D worlds. While the internal camera parameters are usually known or can be easily computed offline, in camera networks extrinsic parameters need to be computed each time a camera changes position, thus not allowing for smooth and dynamic network reconfiguration. In this work we propose a fully markerless, unsupervised, and automatic tool for the estimation of the extrinsic parameters of a camera network, based on 3D human mesh recovery from RGB videos. We show how it is possible to retrieve, from monocular images and with just a weak prior knowledge of the intrinsic parameters, the real-world position of the cameras in the network, together with the floor plane. Our solution also works with a single RGB camera and allows the user to dynamically add, re-position, or remove cameras from the network.","PeriodicalId":299138,"journal":{"name":"Proceedings of the 13th International Conference on Distributed Smart Cameras","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3349801.3357138","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Camera resectioning is essential in computer vision and 3D reconstruction to estimate the position of matching pinhole cameras in 3D worlds. While the internal camera parameters are usually known or can be easily computed offline, in camera networks extrinsic parameters need to be computed each time a camera changes position, thus not allowing for smooth and dynamic network reconfiguration. In this work we propose a fully markerless, unsupervised, and automatic tool for the estimation of the extrinsic parameters of a camera network, based on 3D human mesh recovery from RGB videos. We show how it is possible to retrieve, from monocular images and with just a weak prior knowledge of the intrinsic parameters, the real-world position of the cameras in the network, together with the floor plane. Our solution also works with a single RGB camera and allows the user to dynamically add, re-position, or remove cameras from the network.
基于人体网格恢复的无监督相机姿态估计
在计算机视觉和三维重建中,相机切割是估计匹配针孔相机在三维世界中的位置的关键。摄像机的内部参数通常是已知的,或者可以很容易地离线计算,但在摄像机网络中,每次摄像机改变位置时都需要计算外部参数,因此不允许平滑和动态的网络重构。在这项工作中,我们提出了一个完全无标记、无监督和自动的工具,用于估计摄像机网络的外部参数,基于从RGB视频中恢复的3D人体网格。我们展示了如何从单眼图像中检索,并且仅使用对内在参数的弱先验知识,网络中摄像机的真实位置以及地板平面。我们的解决方案也适用于单个RGB摄像机,并允许用户动态地从网络中添加、重新定位或删除摄像机。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信