Concentration Phenomenon for Random Dynamical Systems: An Operator Theoretic Approach

Muhammad Naeem
{"title":"Concentration Phenomenon for Random Dynamical Systems: An Operator Theoretic Approach","authors":"Muhammad Naeem","doi":"10.48550/arXiv.2212.03670","DOIUrl":null,"url":null,"abstract":"Via operator theoretic methods, we formalize the concentration phenomenon for a given observable `$r$' of a discrete time Markov chain with `$\\mu_{\\pi}$' as invariant ergodic measure, possibly having support on an unbounded state space. The main contribution of this paper is circumventing tedious probabilistic methods with a study of a composition of the Markov transition operator $P$ followed by a multiplication operator defined by $e^{r}$. It turns out that even if the observable/ reward function is unbounded, but for some for some $q>2$, $\\|e^{r}\\|_{q \\rightarrow 2} \\propto \\exp\\big(\\mu_{\\pi}(r) +\\frac{2q}{q-2}\\big) $ and $P$ is hyperbounded with norm control $\\|P\\|_{2 \\rightarrow q }<e^{\\frac{1}{2}[\\frac{1}{2}-\\frac{1}{q}]}$, sharp non-asymptotic concentration bounds follow. \\emph{Transport-entropy} inequality ensures the aforementioned upper bound on multiplication operator for all $q>2$. The role of \\emph{reversibility} in concentration phenomenon is demystified. These results are particularly useful for the reinforcement learning and controls communities as they allow for concentration inequalities w.r.t standard unbounded obersvables/reward functions where exact knowledge of the system is not available, let alone the reversibility of stationary measure.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2212.03670","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Via operator theoretic methods, we formalize the concentration phenomenon for a given observable `$r$' of a discrete time Markov chain with `$\mu_{\pi}$' as invariant ergodic measure, possibly having support on an unbounded state space. The main contribution of this paper is circumventing tedious probabilistic methods with a study of a composition of the Markov transition operator $P$ followed by a multiplication operator defined by $e^{r}$. It turns out that even if the observable/ reward function is unbounded, but for some for some $q>2$, $\|e^{r}\|_{q \rightarrow 2} \propto \exp\big(\mu_{\pi}(r) +\frac{2q}{q-2}\big) $ and $P$ is hyperbounded with norm control $\|P\|_{2 \rightarrow q }2$. The role of \emph{reversibility} in concentration phenomenon is demystified. These results are particularly useful for the reinforcement learning and controls communities as they allow for concentration inequalities w.r.t standard unbounded obersvables/reward functions where exact knowledge of the system is not available, let alone the reversibility of stationary measure.
随机动力系统的集中现象:一种算子理论方法
通过算符理论方法,我们形式化了离散时间马尔可夫链的给定可观测值$r$的集中现象,其中$\mu_{\pi}$为不变遍历测度,可能在无界状态空间上有支持。本文的主要贡献是通过研究马尔可夫转移算子$P$和由$e^{r}$定义的乘法算子的组合来避免繁琐的概率方法。事实证明,即使可观察/奖励函数是无界的,但对于一些$q>2$, $\|e^{r}\|_{q \rightarrow 2} \propto \exp\big(\mu_{\pi}(r) +\frac{2q}{q-2}\big) $和$P$是超界的规范控制$\|P\|_{2 \rightarrow q }2$。揭示了浓度现象中\emph{可逆性}的作用。这些结果对于强化学习和控制社区特别有用,因为它们允许集中不等式与标准无界可观察值/奖励函数在系统的确切知识不可用,更不用说可逆的平稳措施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信