{"title":"Relevance feedback decision trees in content-based image retrieval","authors":"Sean D. MacArthur, C. Brodley, C. Shyu","doi":"10.1109/IVL.2000.853842","DOIUrl":null,"url":null,"abstract":"Significant time and effort has been devoted to finding feature representations of images in databases in order to enable content-based image retrieval (CBIR). Relevance feedback is a mechanism for improving retrieval precision over time by allowing the user to implicitly communicate to the system which of these features are relevant and which are not. We propose a relevance feedback retrieval system that, for each retrieval iteration, learns a decision tree to uncover a common thread between all images marked as relevant. This tree is then used as a model for inferring which of the unseen images the user would not likely desire. We evaluate our approach within the domain of HRCT images of the lung.","PeriodicalId":333664,"journal":{"name":"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"142","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVL.2000.853842","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 142
Abstract
Significant time and effort has been devoted to finding feature representations of images in databases in order to enable content-based image retrieval (CBIR). Relevance feedback is a mechanism for improving retrieval precision over time by allowing the user to implicitly communicate to the system which of these features are relevant and which are not. We propose a relevance feedback retrieval system that, for each retrieval iteration, learns a decision tree to uncover a common thread between all images marked as relevant. This tree is then used as a model for inferring which of the unseen images the user would not likely desire. We evaluate our approach within the domain of HRCT images of the lung.