Demonstrating a Bayesian Online Learning for Energy-Aware Resource Orchestration in vRANs

J. Ayala-Romero, Andres Garcia-Saavedra, X. Costa, G. Iosifidis
{"title":"Demonstrating a Bayesian Online Learning for Energy-Aware Resource Orchestration in vRANs","authors":"J. Ayala-Romero, Andres Garcia-Saavedra, X. Costa, G. Iosifidis","doi":"10.1109/INFOCOMWKSHPS51825.2021.9484585","DOIUrl":null,"url":null,"abstract":"Radio Access Network Virtualization (vRAN) will spearhead the quest towards supple radio stacks that adapt to heterogeneous infrastructure: from energy-constrained platforms deploying cells-on-wheels (e.g., drones) or battery-powered cells to green edge clouds. We demonstrate a novel machine learning approach to solve resource orchestration problems in energy-constrained vRANs. Specifically, we demonstrate two algorithms: (i) BP-vRAN, which uses Bayesian online learning to balance performance and energy consumption, and (ii) SBP-vRAN, which augments our Bayesian optimization approach with safe controls that maximize performance while respecting hard power constraints. We show that our approaches are data-efficient— converge an order of magnitude faster than other machine learning methods—and have provably performance, which is paramount for carrier-grade vRANs. We demonstrate the ad-vantages of our approach in a testbed comprised of fully-fledged LTE stacks and a power meter, and implementing our approach into O-RAN’s non-real-time RAN Intelligent Controller (RIC).","PeriodicalId":109588,"journal":{"name":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE INFOCOM 2021 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INFOCOMWKSHPS51825.2021.9484585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Radio Access Network Virtualization (vRAN) will spearhead the quest towards supple radio stacks that adapt to heterogeneous infrastructure: from energy-constrained platforms deploying cells-on-wheels (e.g., drones) or battery-powered cells to green edge clouds. We demonstrate a novel machine learning approach to solve resource orchestration problems in energy-constrained vRANs. Specifically, we demonstrate two algorithms: (i) BP-vRAN, which uses Bayesian online learning to balance performance and energy consumption, and (ii) SBP-vRAN, which augments our Bayesian optimization approach with safe controls that maximize performance while respecting hard power constraints. We show that our approaches are data-efficient— converge an order of magnitude faster than other machine learning methods—and have provably performance, which is paramount for carrier-grade vRANs. We demonstrate the ad-vantages of our approach in a testbed comprised of fully-fledged LTE stacks and a power meter, and implementing our approach into O-RAN’s non-real-time RAN Intelligent Controller (RIC).
在vRANs中演示贝叶斯在线学习的能源感知资源编排
无线接入网络虚拟化(vRAN)将率先探索适应异构基础设施的灵活无线电堆栈:从部署轮上蜂窝(如无人机)或电池供电的能量受限平台到绿色边缘云。我们展示了一种新的机器学习方法来解决能源受限的vRANs中的资源编排问题。具体来说,我们展示了两种算法:(i) BP-vRAN,它使用贝叶斯在线学习来平衡性能和能耗;(ii) SBP-vRAN,它通过安全控制来增强我们的贝叶斯优化方法,在尊重硬功率约束的同时最大化性能。我们证明了我们的方法是数据高效的——收敛速度比其他机器学习方法快一个数量级——并且具有可证明的性能,这对于运营商级vran来说是至关重要的。我们在一个由成熟的LTE堆栈和功率计组成的测试平台上展示了我们的方法的优势,并将我们的方法应用到O-RAN的非实时RAN智能控制器(RIC)中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信