Z. Georgiou, Chryssis Georgiou, G. Pallis, E. Schiller, Demetris Trihinas
{"title":"A Self-stabilizing Control Plane for Fog Ecosystems","authors":"Z. Georgiou, Chryssis Georgiou, G. Pallis, E. Schiller, Demetris Trihinas","doi":"10.1109/UCC48980.2020.00021","DOIUrl":null,"url":null,"abstract":"Fog Computing is now emerging as the dominating paradigm bridging the compute and connectivity gap between sensing devices and latency-sensitive services. However, as fog deployments scale by accumulating numerous devices interconnected over highly dynamic and volatile network fabrics, the need for self-healing in the presence of failures is more evident. Using the prevailing methodology of self-stabilization, we propose a fault-tolerant framework for control planes that enables fog services to cope and recover from a very broad fault model. Specifically, our model considers network uncertainties, packet drops, node fail-stops and violations of the assumptions according to which the system was designed to operate (e.g., system state corruption). Our self-stabilizing algorithms guarantee automatic recovery within a constant number of communication rounds without the need for external (human) intervention. To showcase the framework’s effectiveness, the correctness proof of the self-stabilizing algorithmic process is accompanied by a comprehensive evaluation featuring an open and reproducible testbed utilizing real-world data from the smart vehicle domain. Results show that our framework ensures a fog system recovers from faults in constant time, analytics are computed correctly, while the control plane overhead scales linearly towards the IoT load.","PeriodicalId":125849,"journal":{"name":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM 13th International Conference on Utility and Cloud Computing (UCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCC48980.2020.00021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fog Computing is now emerging as the dominating paradigm bridging the compute and connectivity gap between sensing devices and latency-sensitive services. However, as fog deployments scale by accumulating numerous devices interconnected over highly dynamic and volatile network fabrics, the need for self-healing in the presence of failures is more evident. Using the prevailing methodology of self-stabilization, we propose a fault-tolerant framework for control planes that enables fog services to cope and recover from a very broad fault model. Specifically, our model considers network uncertainties, packet drops, node fail-stops and violations of the assumptions according to which the system was designed to operate (e.g., system state corruption). Our self-stabilizing algorithms guarantee automatic recovery within a constant number of communication rounds without the need for external (human) intervention. To showcase the framework’s effectiveness, the correctness proof of the self-stabilizing algorithmic process is accompanied by a comprehensive evaluation featuring an open and reproducible testbed utilizing real-world data from the smart vehicle domain. Results show that our framework ensures a fog system recovers from faults in constant time, analytics are computed correctly, while the control plane overhead scales linearly towards the IoT load.