An Efficient Near-lossless Compression Algorithm for Multichannel EEG signals

G. Campobello, Angelica Quercia, G. Gugliandolo, Antonino Segreto, E. Tatti, M. Ghilardi, G. Crupi, A. Quartarone, N. Donato
{"title":"An Efficient Near-lossless Compression Algorithm for Multichannel EEG signals","authors":"G. Campobello, Angelica Quercia, G. Gugliandolo, Antonino Segreto, E. Tatti, M. Ghilardi, G. Crupi, A. Quartarone, N. Donato","doi":"10.1109/MeMeA52024.2021.9478756","DOIUrl":null,"url":null,"abstract":"In many biomedical measurement procedures, it is important to record a huge amount of data, to monitor the state of health of a subject. In such a context, electroencephalograph (EEG) data are one of the most demanding in terms of size and signal behavior. In this paper, we propose a near-lossless compression algorithm for EEG signals able to achieve a compression ratio in the order of 10 with a root-mean-square distortion less than 0.01%. The proposed algorithm exploits the fact that Principal Component Analysis is usually performed on EEG signals for denoising and removing unwanted artifacts. In this particular context, we can consider this algorithm as a good tool to ensure the best information of the signal beside an efficient compression ratio, reducing the amount of memory necessary to record data.","PeriodicalId":429222,"journal":{"name":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Medical Measurements and Applications (MeMeA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MeMeA52024.2021.9478756","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In many biomedical measurement procedures, it is important to record a huge amount of data, to monitor the state of health of a subject. In such a context, electroencephalograph (EEG) data are one of the most demanding in terms of size and signal behavior. In this paper, we propose a near-lossless compression algorithm for EEG signals able to achieve a compression ratio in the order of 10 with a root-mean-square distortion less than 0.01%. The proposed algorithm exploits the fact that Principal Component Analysis is usually performed on EEG signals for denoising and removing unwanted artifacts. In this particular context, we can consider this algorithm as a good tool to ensure the best information of the signal beside an efficient compression ratio, reducing the amount of memory necessary to record data.
一种高效的多通道脑电信号近无损压缩算法
在许多生物医学测量程序中,记录大量数据以监测受试者的健康状况是很重要的。在这种情况下,脑电图(EEG)数据在大小和信号行为方面是最苛刻的。在本文中,我们提出了一种脑电图信号的近无损压缩算法,能够实现10数量级的压缩比,均方根失真小于0.01%。该算法利用了通常对脑电信号进行主成分分析的事实来去噪和去除不需要的伪影。在这种特殊情况下,我们可以认为该算法是一个很好的工具,可以确保信号的最佳信息,以及有效的压缩比,减少记录数据所需的内存量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信