Matching Maximally Stable Extremal Regions Using Edge Information and the Chamfer Distance Function

P. Elinas
{"title":"Matching Maximally Stable Extremal Regions Using Edge Information and the Chamfer Distance Function","authors":"P. Elinas","doi":"10.1109/CRV.2010.10","DOIUrl":null,"url":null,"abstract":"We consider the problem of image recognition using local features. We present a method for matching Maximally Stable Extremal Regions using edge information and the chamfer distance function. We represent MSERs using the Canny edges of their binary image representation in an affine normalized coordinate frame and find correspondences using chamfer matching. We evaluate the performance of our approach on a large number of data sets commonly used in the computer vision literature and we show that it is useful for matching images under large affine and viewpoint transformations as well as blurring, illumination changes and JPEG compression artifacts.","PeriodicalId":358821,"journal":{"name":"2010 Canadian Conference on Computer and Robot Vision","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2010.10","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We consider the problem of image recognition using local features. We present a method for matching Maximally Stable Extremal Regions using edge information and the chamfer distance function. We represent MSERs using the Canny edges of their binary image representation in an affine normalized coordinate frame and find correspondences using chamfer matching. We evaluate the performance of our approach on a large number of data sets commonly used in the computer vision literature and we show that it is useful for matching images under large affine and viewpoint transformations as well as blurring, illumination changes and JPEG compression artifacts.
利用边缘信息和倒角距离函数匹配最稳定的极值区域
我们考虑使用局部特征的图像识别问题。提出了一种利用边缘信息和倒角距离函数匹配极大稳定极值区域的方法。我们在仿射归一化坐标框架中使用二值图像表示的Canny边缘表示mser,并使用倒角匹配找到对应。我们评估了我们的方法在计算机视觉文献中常用的大量数据集上的性能,我们表明它对于在大仿射和视点变换以及模糊,照明变化和JPEG压缩伪影下匹配图像是有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信