A combined self-organizing map neural network with analysis graphical approach for mixed-weibull parameter estimation

Pei-Hsi Lee, C. Torng
{"title":"A combined self-organizing map neural network with analysis graphical approach for mixed-weibull parameter estimation","authors":"Pei-Hsi Lee, C. Torng","doi":"10.1109/IEEM.2008.4738094","DOIUrl":null,"url":null,"abstract":"The mixed-Weibull distribution is widely used to analyze the burn-in time. Kececioglu had presented its parameter estimation method with application of Weibull probability plot (WPP) such a graphic analysis method. However his method is not easy to estimate parameters when the data loses the failure mode information. A self-organizing map neural network (SOM) is used to cluster the classification of failure mode. We combined SOM with Kececioglu¿s method to estimate the parameters of mixed-Weibull distribution. Some simulation studies are given to present the accuracy of parameter estimation of our method under small sample size.","PeriodicalId":414796,"journal":{"name":"2008 IEEE International Conference on Industrial Engineering and Engineering Management","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Conference on Industrial Engineering and Engineering Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEM.2008.4738094","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The mixed-Weibull distribution is widely used to analyze the burn-in time. Kececioglu had presented its parameter estimation method with application of Weibull probability plot (WPP) such a graphic analysis method. However his method is not easy to estimate parameters when the data loses the failure mode information. A self-organizing map neural network (SOM) is used to cluster the classification of failure mode. We combined SOM with Kececioglu¿s method to estimate the parameters of mixed-Weibull distribution. Some simulation studies are given to present the accuracy of parameter estimation of our method under small sample size.
混合威布尔参数估计的自组织映射神经网络与分析图相结合方法
混合威布尔分布被广泛用于分析磨损时间。Kececioglu提出了利用威布尔概率图(Weibull probability plot, WPP)这一图形分析方法进行参数估计的方法。然而,当数据丢失失效模式信息时,该方法不容易估计参数。采用自组织映射神经网络(SOM)对故障模式进行聚类分类。我们将SOM和Kececioglu方法结合起来估计混合威布尔分布的参数。仿真研究表明,在小样本条件下,本文方法的参数估计是准确的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信