Five results on maximizing topological indices in graphs

Stijn Cambie
{"title":"Five results on maximizing topological indices in graphs","authors":"Stijn Cambie","doi":"10.46298/dmtcs.6896","DOIUrl":null,"url":null,"abstract":"In this paper, we prove a collection of results on graphical indices. We\ndetermine the extremal graphs attaining the maximal generalized Wiener index\n(e.g. the hyper-Wiener index) among all graphs with given matching number or\nindependence number. This generalizes some work of Dankelmann, as well as some\nwork of Chung. We also show alternative proofs for two recents results on\nmaximizing the Wiener index and external Wiener index by deriving it from\nearlier results. We end with proving two conjectures. We prove that the maximum\nfor the difference of the Wiener index and the eccentricity is attained by the\npath if the order $n$ is at least $9$ and that the maximum weighted Szeged\nindex of graphs of given order is attained by the balanced complete bipartite\ngraphs.","PeriodicalId":110830,"journal":{"name":"Discret. Math. Theor. Comput. Sci.","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discret. Math. Theor. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.6896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we prove a collection of results on graphical indices. We determine the extremal graphs attaining the maximal generalized Wiener index (e.g. the hyper-Wiener index) among all graphs with given matching number or independence number. This generalizes some work of Dankelmann, as well as some work of Chung. We also show alternative proofs for two recents results on maximizing the Wiener index and external Wiener index by deriving it from earlier results. We end with proving two conjectures. We prove that the maximum for the difference of the Wiener index and the eccentricity is attained by the path if the order $n$ is at least $9$ and that the maximum weighted Szeged index of graphs of given order is attained by the balanced complete bipartite graphs.
图中拓扑指数最大化的五个结果
在本文中,我们证明了一组关于图形指标的结果。我们确定达到最大广义维纳指数的极值图(例如:给定匹配数或独立数的所有图之间的超维纳指数(hyper-Wiener index)。这概括了Dankelmann和Chung的一些工作。我们还通过从以前的结果推导出两个关于最大化维纳指数和外部维纳指数的最新结果的替代证明。我们以证明两个猜想结束。我们证明了当阶$n$至少为$9$时,Wiener指数与偏心率之差的最大值是由路径获得的,而给定阶数的图的最大加权szegeindex是由平衡完全双分图获得的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信