Robust Data-Driven Output Feedback Control via Bootstrapped Multiplicative Noise

Benjamin J. Gravell, I. Shames, T. Summers
{"title":"Robust Data-Driven Output Feedback Control via Bootstrapped Multiplicative Noise","authors":"Benjamin J. Gravell, I. Shames, T. Summers","doi":"10.48550/arXiv.2205.05119","DOIUrl":null,"url":null,"abstract":"We propose a robust data-driven output feedback control algorithm that explicitly incorporates inherent finite-sample model estimate uncertainties into the control design. The algorithm has three components: (1) a subspace identification nominal model estimator; (2) a bootstrap resampling method that quantifies non-asymptotic variance of the nominal model estimate; and (3) a non-conventional robust control design method comprising a coupled optimal dynamic output feedback filter and controller with multiplicative noise. A key advantage of the proposed approach is that the system identification and robust control design procedures both use stochastic uncertainty representations, so that the actual inherent statistical estimation uncertainty directly aligns with the uncertainty the robust controller is being designed against. Moreover, the control design method accommodates a highly structured uncertainty representation that can capture uncertainty shape more effectively than existing approaches. We show through numerical experiments that the proposed robust data-driven output feedback controller can significantly outperform a certainty equivalent controller on various measures of sample complexity and stability robustness.","PeriodicalId":268449,"journal":{"name":"Conference on Learning for Dynamics & Control","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference on Learning for Dynamics & Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2205.05119","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a robust data-driven output feedback control algorithm that explicitly incorporates inherent finite-sample model estimate uncertainties into the control design. The algorithm has three components: (1) a subspace identification nominal model estimator; (2) a bootstrap resampling method that quantifies non-asymptotic variance of the nominal model estimate; and (3) a non-conventional robust control design method comprising a coupled optimal dynamic output feedback filter and controller with multiplicative noise. A key advantage of the proposed approach is that the system identification and robust control design procedures both use stochastic uncertainty representations, so that the actual inherent statistical estimation uncertainty directly aligns with the uncertainty the robust controller is being designed against. Moreover, the control design method accommodates a highly structured uncertainty representation that can capture uncertainty shape more effectively than existing approaches. We show through numerical experiments that the proposed robust data-driven output feedback controller can significantly outperform a certainty equivalent controller on various measures of sample complexity and stability robustness.
基于自举乘性噪声的鲁棒数据驱动输出反馈控制
我们提出了一种鲁棒的数据驱动输出反馈控制算法,该算法明确地将固有的有限样本模型估计不确定性纳入控制设计。该算法由三个部分组成:(1)子空间识别标称模型估计器;(2)对标称模型估计的非渐近方差进行量化的自举重采样方法;(3)一种由最优动态输出反馈滤波器和带有乘性噪声的控制器耦合组成的非常规鲁棒控制设计方法。该方法的一个关键优点是系统识别和鲁棒控制设计过程都使用随机不确定性表示,因此实际固有的统计估计不确定性与鲁棒控制器设计所针对的不确定性直接一致。此外,控制设计方法适应高度结构化的不确定性表示,可以比现有方法更有效地捕获不确定性形状。我们通过数值实验表明,所提出的鲁棒数据驱动输出反馈控制器在样本复杂性和稳定性鲁棒性的各种度量上都明显优于确定性等效控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信