Low-Rank Semidefinite Programming: Theory and Applications

A. Lemon, A. M. So, Y. Ye
{"title":"Low-Rank Semidefinite Programming: Theory and Applications","authors":"A. Lemon, A. M. So, Y. Ye","doi":"10.1561/2400000009","DOIUrl":null,"url":null,"abstract":"Finding low-rank solutions of semidefinite programs is important in many applications. For example, semidefinite programs that arise as relaxations of polynomial optimization problems are exact relaxations when the semidefinite program has a rank-1 solution. Unfortunately, computing a minimum-rank solution of a semidefinite program is an NP-hard problem. In this paper we review the theory of low-rank semidefinite programming, presenting theorems that guarantee the existence of a low-rank solution, heuristics for computing low-rank solutions, and algorithms for finding low-rank approximate solutions. Then we present applications of the theory to trust-region problems and signal processing.","PeriodicalId":329329,"journal":{"name":"Found. Trends Optim.","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Found. Trends Optim.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1561/2400000009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

Abstract

Finding low-rank solutions of semidefinite programs is important in many applications. For example, semidefinite programs that arise as relaxations of polynomial optimization problems are exact relaxations when the semidefinite program has a rank-1 solution. Unfortunately, computing a minimum-rank solution of a semidefinite program is an NP-hard problem. In this paper we review the theory of low-rank semidefinite programming, presenting theorems that guarantee the existence of a low-rank solution, heuristics for computing low-rank solutions, and algorithms for finding low-rank approximate solutions. Then we present applications of the theory to trust-region problems and signal processing.
低秩半定规划:理论与应用
求解半定规划的低秩解在许多应用中具有重要意义。例如,作为多项式优化问题的松弛出现的半定规划是当该半定规划具有秩1解时的精确松弛。不幸的是,计算一个半定规划的最小秩解是一个np困难问题。本文回顾了低秩半定规划的理论,给出了保证低秩解存在的定理,计算低秩解的启发式方法,以及寻找低秩近似解的算法。然后介绍了该理论在信赖域问题和信号处理中的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信