ASAR 2018 Competition Page Layout Analysis Using Fully Convolutional Networks

Ahmad Droby, Berat Kurar Barakat, Jihad El-Sana
{"title":"ASAR 2018 Competition Page Layout Analysis Using Fully Convolutional Networks","authors":"Ahmad Droby, Berat Kurar Barakat, Jihad El-Sana","doi":"10.1109/ASAR.2018.8480326","DOIUrl":null,"url":null,"abstract":"This technical report presents a Fully Convolutional Network based method for layout analysis of benchmarking dataset provided by the competition. The document image is segmented into text and non-text zones by dense pixel prediction. Convolutional part of the network can learn useful features from the document images and is robust to uncontrained layouts. We have evaluated the zone segmentation with average black pixel rate, over-segmentation error, under-segmentation error, correct-segmentation, missed-segmentation error, false alarm error, overall block error rate whereas the zone classification with precision, recall, F1-measure and average class accuracy on both pixel and block levels.","PeriodicalId":165564,"journal":{"name":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 2nd International Workshop on Arabic and Derived Script Analysis and Recognition (ASAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASAR.2018.8480326","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This technical report presents a Fully Convolutional Network based method for layout analysis of benchmarking dataset provided by the competition. The document image is segmented into text and non-text zones by dense pixel prediction. Convolutional part of the network can learn useful features from the document images and is robust to uncontrained layouts. We have evaluated the zone segmentation with average black pixel rate, over-segmentation error, under-segmentation error, correct-segmentation, missed-segmentation error, false alarm error, overall block error rate whereas the zone classification with precision, recall, F1-measure and average class accuracy on both pixel and block levels.
基于全卷积网络的ASAR 2018竞赛页面布局分析
本技术报告提出了一种基于全卷积网络的方法,用于竞争对手提供的基准数据集的布局分析。通过密集像素预测将文档图像分割为文本区和非文本区。网络的卷积部分可以从文档图像中学习有用的特征,并且对无约束布局具有鲁棒性。我们评估了具有平均黑像素率、过度分割错误、分割不足错误、正确分割错误、遗漏分割错误、虚警错误、整体块错误率的区域分割,以及具有精度、召回率、F1-measure和像素和块水平的平均类准确率的区域分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信