{"title":"Improving correctness of finite-state machine synthesis from multiple partial input/output sequences","authors":"P. Chongstitvatana, C. Aporntewan","doi":"10.1109/EH.1999.785463","DOIUrl":null,"url":null,"abstract":"Our previous work focused on the synthesis of sequential circuits based on a partial input/output sequence. As the behavioural description of the target circuit is not known the correctness of the result can not be verified. This paper proposes a method which increases the correctness percentage of the finite-state machine (FSM) synthesis using multiple partial input/output sequences. The synthesizer is based on genetic algorithm. The experimental results show that the correctness percentage can be increased to 100% by increasing the number of input/output sequences.","PeriodicalId":234639,"journal":{"name":"Proceedings of the First NASA/DoD Workshop on Evolvable Hardware","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First NASA/DoD Workshop on Evolvable Hardware","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EH.1999.785463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23
Abstract
Our previous work focused on the synthesis of sequential circuits based on a partial input/output sequence. As the behavioural description of the target circuit is not known the correctness of the result can not be verified. This paper proposes a method which increases the correctness percentage of the finite-state machine (FSM) synthesis using multiple partial input/output sequences. The synthesizer is based on genetic algorithm. The experimental results show that the correctness percentage can be increased to 100% by increasing the number of input/output sequences.