A stochastic model for active transport

R. Purnichescu-Purtan, Irina Badralexi
{"title":"A stochastic model for active transport","authors":"R. Purnichescu-Purtan, Irina Badralexi","doi":"10.11145/texts.2018.10.277","DOIUrl":null,"url":null,"abstract":"We develop a stochastic model for an intracellular active transport problem. Our aims are to calculate the probability that a molecular motor reaches a hidden target, to study what influences this probability and to calculate the time required for the molecular motor to hit the target (mean first passage time). We study different biologically relevant scenarios, which include the possibility of multiple hidden targets (which breed competition) and the presence of obstacles. The purpose of including obstacles is to illustrate actual disruptions of the intracellular transport (which can result, for example, in several neurological disorders. From a mathematical point of view, the intracellular active transport is modelled by two independent continuous-time, discrete space Markov chains: one for the dynamics of the molecular motor in the space intervals and one for the domain of target. The process is time homogeneous and independent of the position of the molecular motor.","PeriodicalId":114114,"journal":{"name":"Texts in Biomathematics","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Texts in Biomathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11145/texts.2018.10.277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a stochastic model for an intracellular active transport problem. Our aims are to calculate the probability that a molecular motor reaches a hidden target, to study what influences this probability and to calculate the time required for the molecular motor to hit the target (mean first passage time). We study different biologically relevant scenarios, which include the possibility of multiple hidden targets (which breed competition) and the presence of obstacles. The purpose of including obstacles is to illustrate actual disruptions of the intracellular transport (which can result, for example, in several neurological disorders. From a mathematical point of view, the intracellular active transport is modelled by two independent continuous-time, discrete space Markov chains: one for the dynamics of the molecular motor in the space intervals and one for the domain of target. The process is time homogeneous and independent of the position of the molecular motor.
主动运输的随机模型
我们为细胞内主动运输问题建立了一个随机模型。我们的目的是计算分子马达到达隐藏目标的概率,研究影响这个概率的因素,并计算分子马达到达目标所需的时间(平均首次通过时间)。我们研究了不同的生物学相关情景,其中包括多个隐藏目标的可能性(这滋生了竞争)和障碍的存在。包括障碍的目的是说明细胞内运输的实际中断(这可能导致,例如,几种神经系统疾病)。从数学的角度来看,细胞内主动运输由两个独立的连续时间离散空间马尔可夫链来建模:一个用于分子马达在空间区间的动力学,另一个用于目标域。这个过程是时间均匀的,与分子马达的位置无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信