D. Beljonne, J. Brédas, B. Cumpston, J. Ehrlich, L. Erskine, A. Heikal, Z. Hu, T. Kogej, I. Y. Lee, S. Marder, J. Perry, H. Rockel, S. Thayumanavan, X. Wu
{"title":"Nonlinear Spectroscopy and Applications of Two-Photon Absorbing Molecules","authors":"D. Beljonne, J. Brédas, B. Cumpston, J. Ehrlich, L. Erskine, A. Heikal, Z. Hu, T. Kogej, I. Y. Lee, S. Marder, J. Perry, H. Rockel, S. Thayumanavan, X. Wu","doi":"10.1364/otfa.1997.tha.3","DOIUrl":null,"url":null,"abstract":"Molecules exhibiting strong two-photon absorption hold great potential for a wide range of applications including: two-photon fluorescence microscopy, three-dimensional (3D) optical data storage, 3D microfabrication, and optical limiting. (1-4) From a fundamental point of view, knowledge of molecular two-photon spectra and structure/property relationships are also important for a more complete understanding of the third order polarizabilities of conjugated molecules. However, very little is known or understood about two-photon states and spectra of conjugated molecules or how they correlate with structure. We have observed large two-photon absorptivities in bis-donor diphenylpolyene derivatives, that appears to be correlated to simultaneous charge transfer from the end groups to the pi-conjugated bridge in the molecule. These molecules are also excellent photoexcitable electron donors that can initiate charge-transfer reactions. In initial applications of these materials we have demonstrated their use in two-photon initiation of polymerization and optical limiting.","PeriodicalId":378320,"journal":{"name":"Organic Thin Films for Photonics Applications","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Thin Films for Photonics Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/otfa.1997.tha.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Molecules exhibiting strong two-photon absorption hold great potential for a wide range of applications including: two-photon fluorescence microscopy, three-dimensional (3D) optical data storage, 3D microfabrication, and optical limiting. (1-4) From a fundamental point of view, knowledge of molecular two-photon spectra and structure/property relationships are also important for a more complete understanding of the third order polarizabilities of conjugated molecules. However, very little is known or understood about two-photon states and spectra of conjugated molecules or how they correlate with structure. We have observed large two-photon absorptivities in bis-donor diphenylpolyene derivatives, that appears to be correlated to simultaneous charge transfer from the end groups to the pi-conjugated bridge in the molecule. These molecules are also excellent photoexcitable electron donors that can initiate charge-transfer reactions. In initial applications of these materials we have demonstrated their use in two-photon initiation of polymerization and optical limiting.